Page 4
Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
Page 5
In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Page 6
(EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
Table of contents Table of contents Section 1 Introduction................23 This manual....................23 Intended audience..................23 Product documentation................24 Product documentation set..............24 Document revision history..............25 Related documents................26 Symbols and conventions...............26 Symbols.....................26 Document conventions..............27 Section 2 Available functions..............29 Main protection functions................29 Back-up protection functions..............29 Control and monitoring functions............30 Communication..................32 Basic IED functions.................33 Section 3 Analog inputs...............35...
Page 8
Table of contents Function block...................48 Signals....................48 Basic part for LED indication module............49 Identification..................49 Function block...................49 Signals....................49 Settings....................50 LCD part for HMI function keys control module........51 Identification..................51 Function block...................51 Signals....................51 Settings....................51 Operation principle..................52 Local HMI...................52 Display..................52 LEDs.....................55 Keypad..................55 LED....................57 Functionality.................57 Status LEDs..................57 Indication LEDs................57 Function keys..................66 Functionality.................66...
Page 9
Table of contents Functionality..................73 Function block...................74 Signals....................74 Settings....................75 Monitored data...................77 Operation principle................78 Technical data...................82 Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC (51N/67N)...............83 Identification ..................83 Functionality..................83 Function block...................84 Signals....................84 Settings....................85 Monitored data...................88 Operation principle................88 Operating quantity within the function..........88 Internal polarizing.................89 Operating directional quantity within the function......92 External polarizing for ground-fault function.........93...
Page 10
Table of contents Signals.....................108 Settings....................109 Monitored data.................109 Operation principle................110 Technical data.................111 Pole discrepancy protection CCRPLD (52PD)........112 Identification ...................112 Functionality..................112 Function block.................113 Signals.....................113 Settings....................113 Monitored data.................114 Operation principle................114 Pole discrepancy signaling from circuit breaker......116 Unsymmetrical current detection..........117 Technical data.................117 Negative sequence based overcurrent function DNSPTOC (46)..117 Identification..................117 Functionality..................118 Function block.................118...
Page 11
Table of contents Two step overvoltage protection OV2PTOV (59).........129 Identification..................129 Functionality..................129 Function block.................130 Signals.....................130 Settings....................131 Monitored data.................132 Operation principle................132 Measurement principle...............133 Time delay..................133 Blocking..................135 Design..................135 Technical data.................137 Two step residual overvoltage protection ROV2PTOV (59N)....137 Identification..................137 Functionality..................137 Function block.................138 Signals.....................138 Settings....................139 Monitored data.................139 Operation principle................139 Measurement principle...............140...
Page 12
Table of contents Technical data.................156 Breaker close/trip circuit monitoring TCSSCBR........156 Identification..................156 Functionality..................156 Function block.................157 Signals.....................157 Settings....................157 Operation principle................157 Technical data.................158 Section 10 Control................159 Apparatus control..................159 Functionality..................159 Bay control QCBAY.................159 Identification ................159 Functionality................159 Function block................160 Signals..................160 Settings..................160 Local remote LOCREM..............161 Identification ................161 Functionality................161 Function block................161 Signals..................161...
Page 13
Table of contents Signals.....................167 Settings....................169 Monitored data.................169 Operation principle................169 Selector mini switch VSGGIO...............170 Identification..................170 Functionality..................170 Function block.................170 Signals.....................170 Settings....................171 Operation principle................171 IEC 61850 generic communication I/O functions DPGGIO....172 Identification..................172 Functionality..................172 Function block.................173 Signals.....................173 Settings....................173 Operation principle................173 Single point generic control 8 signals SPC8GGIO.......174 Identification..................174 Functionality..................174 Function block.................174...
Page 14
Table of contents Signals.....................181 Settings....................181 Function commands user defined for IEC 60870-5-103 I103USRCMD..................181 Functionality..................181 Function block.................182 Signals.....................182 Settings....................182 Function commands generic for IEC 60870-5-103 I103GENCMD..183 Functionality..................183 Function block.................183 Signals.....................183 Settings....................184 IED commands with position and select for IEC 60870-5-103 I103POSCMD..................184 Functionality..................184 Function block.................184 Signals.....................184...
Page 15
Table of contents Inverter function block INVERTER..........196 PULSETIMER function block .............196 Controllable gate function block GATE........197 Exclusive OR function block XOR..........198 Loop delay function block LOOPDELAY........199 Timer function block TIMERSET..........200 AND function block ..............201 Set-reset memory function block SRMEMORY......202 Reset-set with memory function block RSMEMORY....204 Technical data.................205 Fixed signals FXDSIGN................206 Identification..................206...
Page 16
Table of contents Operation principle................213 Integer to boolean 16 conversion with logic node representation IB16FCVB.....................213 Identification..................213 Functionality..................213 Function block.................214 Signals.....................214 Settings....................215 Operation principle................215 Section 12 Monitoring................217 Measurements..................217 Functionality..................217 Measurements CVMMXN..............218 Identification ................218 Function block................219 Signals..................219 Settings..................220 Monitored data................223 Phase current measurement CMMXU..........224 Identification ................224 Function block................224 Signals..................224...
Page 17
Table of contents Signals..................232 Settings..................233 Monitored data................234 Phase-neutral voltage measurement VNMMXU......235 Identification ................235 Function block................235 Signals..................235 Settings..................236 Monitored data................237 Operation principle................237 Measurement supervision............237 Measurements CVMMXN............241 Phase current measurement CMMXU........246 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU..............247 Voltage and current sequence measurements VMSQI, CMSQI..................247 Technical data.................247 Event Counter CNTGGIO..............248...
Page 18
Table of contents Signals..................257 Settings..................258 Analog input signals A4RADR............262 Identification................262 Function block................262 Signals..................263 Settings..................263 Binary input signals BxRBDR............267 Identification................267 Function block................267 Signals..................268 Settings..................268 Operation principle................274 Disturbance information..............276 Indications .................276 Event recorder ................276 Sequential of events ..............276 Trip value recorder ..............276 Disturbance recorder ..............276 Time tagging................277 Recording times................277...
Page 19
Table of contents Sequential of events................285 Functionality..................285 Function block.................285 Signals.....................285 Input signals................285 Operation principle................285 Technical data.................286 Trip value recorder................286 Functionality..................286 Function block.................286 Signals.....................287 Input signals................287 Operation principle................287 Technical data.................287 Disturbance recorder................288 Functionality..................288 Function block.................288 Signals.....................288 Settings....................288 Operation principle................288 Memory and storage..............289 Technical data.................291 IEC 61850 generic communication I/O functions SPGGIO....291 Identification..................291...
Page 20
Table of contents Functionality..................295 Function block.................295 Signals.....................296 Settings....................296 Monitored data.................297 Operation principle................297 Measured value expander block MVEXP..........297 Identification..................297 Functionality..................297 Function block.................298 Signals.....................298 Settings....................298 Operation principle................298 Fault locator LMBRFLO................299 Identification..................299 Functionality..................299 Function block.................300 Signals.....................300 Settings....................301 Monitored data.................302 Operation principle................302 Measuring Principle..............303 Accurate algorithm for measurement of distance to fault...303 The non-compensated impedance model........307 Technical data.................308...
Page 22
Table of contents Measurands user defined signals for IEC 60870-5-103 I103MEASUSR..................335 Functionality..................335 Function block.................335 Signals.....................335 Settings....................336 Function status auto-recloser for IEC 60870-5-103 I103AR....336 Functionality..................336 Function block.................337 Signals.....................337 Settings....................337 Function status ground-fault for IEC 60870-5-103 I103EF....337 Functionality..................337 Function block.................338 Signals.....................338 Settings....................338 Function status fault protection for IEC 60870-5-103 I103FLTPROT..................338 Functionality..................338...
Page 23
Table of contents Identification..................345 Functionality..................345 Function block.................345 Signals.....................346 Settings....................346 Monitored data.................347 Operation principle................347 Technical data.................348 Energy calculation and demand handling ETPMMTR......349 Identification..................349 Functionality..................349 Function block.................349 Signals.....................350 Settings....................351 Monitored data.................352 Operation principle................352 Technical data.................353 Section 14 Station communication............355 DNP3 protocol..................355 IEC 61850-8-1 communication protocol ..........355 Identification..................355 Functionality..................355 Communication interfaces and protocols........356...
Page 24
Table of contents Function block.................363 Signals.....................363 Settings....................364 Operation principle .................364 GOOSE function block to receive an integer value GOOSEINTRCV...................364 Identification..................364 Functionality..................365 Function block.................365 Signals.....................365 Settings....................365 Operation principle .................365 GOOSE function block to receive a measurand value GOOSEMVRCV..................366 Identification..................366 Functionality..................366 Function block.................366 Signals.....................367 Settings....................367 Operation principle .................367...
Page 25
Table of contents Identification................374 Settings..................374 Operation principle................374 Internal signals................377 Run-time model................378 Technical data.................379 Time synchronization................380 Functionality..................380 Time synchronization TIMESYNCHGEN.........380 Identification................380 Settings..................380 Time synchronization via SNTP............380 Identification................380 Settings..................381 Time system, summer time begin DSTBEGIN........381 Identification................381 Settings..................382 Time system, summer time ends DSTEND........382 Identification................382 Settings..................383 Time zone from UTC TIMEZONE............383...
Page 26
Table of contents Settings..................390 Operation principle................390 Test mode functionality TESTMODE............391 Identification..................391 Functionality..................392 Function block.................392 Signals.....................392 Settings....................393 Operation principle................393 Change lock function CHNGLCK ............394 Identification..................394 Functionality..................394 Function block.................395 Signals.....................395 Settings....................395 Operation principle................395 IED identifiers TERMINALID..............396 Identification..................396 Functionality..................396 Settings....................396 Product information ................397 Identification..................397 Functionality..................397 Settings....................397...
Page 27
Table of contents Settings....................408 Operation principle................408 Global base values GBASVAL.............408 Identification..................409 Functionality..................409 Settings....................409 Authority check ATHCHCK..............409 Identification..................409 Functionality..................410 Settings....................410 Operation principle................410 Authorization handling in the IED..........411 Authority status ATHSTAT..............411 Identification..................411 Functionality..................412 Function block.................412 Signals.....................412 Settings....................412 Operation principle................412 Denial of service...................413 Functionality..................413 Denial of service, frame rate control for front port DOSFRNT..413 Identification................413...
Page 28
Optical serial rear connection............428 EIA-485 serial rear connection............428 Communication interfaces and protocols........429 Recommended industrial Ethernet switches........429 Connection diagrams................429 Connection diagrams for 650 series..........430 Connection diagrams for REB650 A03A.........439 Section 17 Technical data..............449 Dimensions...................449 Power supply..................449 Energizing inputs..................450 Binary inputs..................450 Signal outputs..................451 Power outputs..................451...
Section 1 1MRK 505 277-UUS C Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
Section 1 1MRK 505 277-UUS C Introduction during the testing phase. The manual provides procedures for checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service.
Section 1 1MRK 505 277-UUS C Introduction The information icon alerts the reader of important facts and conditions. The tip icon indicates advice on, for example, how to design your project or how to use a certain function. Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death.
Section 2 1MRK 505 277-UUS C Available functions Section 2 Available functions Main protection functions IEC 61850/ ANSI Function description Busbar Function block name Differential protection HZPDIF 1Ph High impedance differential protection 1–9 Back-up protection functions IEC 61850/ ANSI Function description Busbar Function block name...
Section 2 1MRK 505 277-UUS C Available functions Control and monitoring functions IEC 61850/Function ANSI Function description Busbar block name Control QCBAY Bay control LOCREM Handling of LR-switch positions LOCREMCTRL LHMI control of Permitted Source To Operate (PSTO) CBC3 Circuit breaker for 3CB SLGGIO Logic Rotating Switch for function selection and LHMI presentation...
Page 37
Section 2 1MRK 505 277-UUS C Available functions IEC 61850/Function ANSI Function description Busbar block name SRMEMORY Configurable logic blocks, set-reset memory flip-flop gate RSMEMORY Configurable logic blocks, reset-set memory flip-flop gate FXDSIGN Fixed signal function block B16I Boolean 16 to Integer conversion B16IFCVI Boolean 16 to Integer conversion with logic node representation...
Section 2 1MRK 505 277-UUS C Available functions IEC 61850/Function ANSI Function description Busbar block name SPVNZBAT Station battery supervision 0–1 SSIMG Insulation gas monitoring function 0–2 SSIML Insulation liquid monitoring function 0–2 SSCBR Circuit breaker condition monitoring 0–1 I103MEAS Measurands for IEC60870-5-103 I103MEASUSR Measurands user defined signals for IEC60870-5-103...
Section 2 1MRK 505 277-UUS C Available functions IEC 61850/Function block ANSI Function description Busbar name CH4TCP DNP3.0 for TCP/IP communication protocol OPTICALDNP DNP3.0 for optical serial communication MSTSERIAL DNP3.0 for serial communication protocol MST1TCP DNP3.0 for TCP/IP communication protocol MST2TCP DNP3.0 for TCP/IP communication protocol MST3TCP...
Page 40
Section 2 1MRK 505 277-UUS C Available functions IEC 61850/Function Function description block name DTSBEGIN, DTSEND, Time synchronization, daylight saving TIMEZONE IRIG-B Time synchronization SETGRPS Setting group handling ACTVGRP Parameter setting groups TESTMODE Test mode functionality CHNGLCK Change lock function TERMINALID IED identifiers PRODINF...
Section 3 1MRK 505 277-UUS C Analog inputs Section 3 Analog inputs Introduction Analog input channels are already configured inside the IED. However the IED has to be set properly to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined properly.
Section 3 1MRK 505 277-UUS C Analog inputs • Forward means direction into the object. • Reverse means direction out from the object. Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse Protected Object Line , transformer , etc e.g .
Page 43
Section 3 1MRK 505 277-UUS C Analog inputs Table 1: AISVBAS Non group settings (basic) Name Values (Range) Unit Step Default Description PhaseAngleRef TRM - Channel 1 TRM - Channel 1 Reference channel for phase angle TRM - Channel 2 presentation TRM - Channel 3 TRM - Channel 4...
Page 44
Section 3 1MRK 505 277-UUS C Analog inputs Name Values (Range) Unit Step Default Description VTprim8 0.001 - 9999.999 0.001 Rated VT primary voltage VTsec9 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim9 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec10 0.001 - 999.999...
Page 45
Section 3 1MRK 505 277-UUS C Analog inputs Name Values (Range) Unit Step Default Description CTprim8 1 - 99999 1000 Rated CT primary current VTsec9 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim9 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec10 0.001 - 999.999...
Page 46
Section 3 1MRK 505 277-UUS C Analog inputs Table 5: AIM_6I_4U Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 0.1 - 10.0 Rated CT secondary current CTprim1 1 - 99999 1000...
Section 4 1MRK 505 277-UUS C Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
Section 4 1MRK 505 277-UUS C Binary input and output modules 4.1.3 Settings 4.1.3.1 Setting parameters for binary input modules Table 6: BIO_9BI Non group settings (basic) Name Values (Range) Unit Step Default Description BatteryVoltage 24 - 250 Station battery voltage Table 7: BIO_9BI Non group settings (advanced) Name...
Section 4 1MRK 505 277-UUS C Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime6 0.000 - 600.000 0.001 0.000 Oscillation time for input 6 Threshold7 6 - 900 Threshold in percentage of station battery voltage for input 7 DebounceTime7 0.000 - 0.100 0.001...
Page 50
Section 4 1MRK 505 277-UUS C Binary input and output modules Name Values (Range) Unit Step Default Description OscillationCount3 0 - 255 Oscillation count for input 3 OscillationTime3 0.000 - 600.000 0.001 0.000 Oscillation time for input 3 Threshold4 6 - 900 Threshold in percentage of station battery voltage for input 4 DebounceTime4...
Page 51
Section 4 1MRK 505 277-UUS C Binary input and output modules Name Values (Range) Unit Step Default Description DebounceTime11 0.000 - 0.100 0.001 0.005 Debounce time for input 11 OscillationCount11 0 - 255 Oscillation count for input 11 OscillationTime11 0.000 - 600.000 0.001 0.000 Oscillation time for input 11...
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 10: SCREEN Non group settings (basic) Name Values (Range)
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Basic part for LED indication module 5.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Basic part for LED indication module LEDGEN Basic part for LED indication module GRP1_LED1 - GRP1_LED15 GRP2_LED1 -...
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Table 14: GRP1_LED1 Input signals Name Type Default Description HM1L01R BOOLEAN Red indication of LED1, local HMI alarm group 1 HM1L01Y BOOLEAN Yellow indication of LED1, local HMI alarm group 1 HM1L01G BOOLEAN Green indication of LED1, local HMI alarm group 1...
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI LCD part for HMI function keys control module 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number LCD part for HMI Function Keys FNKEYMD1 - Control module FNKEYMD5 5.4.2 Function block...
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Table 21: FNKEYTY1 Non group settings (basic) Name Values (Range) Unit Step Default Description Type Disabled Disabled Function key type Menu shortcut Control MenuShortcut Main menu Main menu Events Measurements Diagnostics Disturbance records Clear...
Page 59
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI GUID-97DA85DD-DB01-449B-AD1F-EEC75A955D25 V3 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
Page 60
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI GUID-1ECF507D-322A-4B94-B09C-49F6A0085384 V1 EN Figure 9: Truncated path The number before the function instance, for example 1:ETHFRNT, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
Page 62
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI The keypad also contains programmable push-buttons that can be configured either as menu shortcut or control buttons. ANSI11000247 V1 EN Figure 12: LHMI keypad with object control, navigation and command push buttons and RJ-45 communication port 1...5 Function button Close...
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI 5.5.2 5.5.2.1 Functionality The function blocks LEDGEN and GRP1_LEDx, GRP2_LEDx and GRP3_LEDx (x=1-15) controls and supplies information about the status of the indication LEDs. The input and output signals of the function blocks are configured with PCM600. The input signal for each LED is selected individually using SMT or ACT.
Page 64
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Acknowledgment/reset • From local HMI • The active indications can be acknowledged/reset manually. Manual acknowledgment and manual reset have the same meaning and is a common signal for all the operating sequences and LEDs. The function is positive edge triggered, not level triggered.
Page 65
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI = No indication = Steady light = Flash = Green = Red = Yellow IEC09000311.vsd IEC09000311 V1 EN Figure 13: Symbols used in the sequence diagrams Sequence 1 (Follow-S) This sequence follows all the time, with a steady light, the corresponding input signals. It does not react on acknowledgment or reset.
Page 66
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Sequence 3 (LatchedAck-F-S) This sequence has a latched function and works in collecting mode. Every LED is independent of the other LEDs in its operation. At the activation of the input signal, the indication starts flashing.
Page 67
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according to Figure Activating...
Page 68
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI sequence 3 and 4 is that indications that are still activated will not be affected by the reset that is, immediately after the positive edge of the reset has been executed a new reading and storing of active signals is performed.
Page 69
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI signals is performed. LEDs set for sequence 6 are completely independent in its operation of LEDs set for other sequences. Timing diagram for sequence 6 Figure 22 shows the timing diagram for two indications within one disturbance. Disturbance tRestart Activating...
Page 70
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Disturbance Disturbance tRestart tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000240_2_en.vsd IEC01000240 V2 EN Figure 23: Operating sequence 6 (LatchedReset-S), two different disturbances Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed.
Page 71
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000241_2_en.vsd IEC01000241 V2 EN Figure 24: Operating sequence 6 (LatchedReset-S), two indications within same disturbance but with reset of activating signal between Figure 25 shows the timing diagram for manual reset.
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left...
Page 73
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI FNKEYMD1 - FNKEYMD5 function block also has a number of settings and parameters that control the behavior of the function block. These settings and parameters are normally set using the PST. Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED.
Page 74
Section 5 1MRK 505 277-UUS C Local Human-Machine-Interface LHMI Note that the third positive edge on the input attribute does not cause a pulse, since the edge was applied during pulse output. A new pulse can only begin when the output is zero;...
Section 6 1MRK 505 277-UUS C Differential protection 6.1.4 Signals Table 22: HZPDIF (87) Input signals Name Type Default Description GROUP Group signal for current input SIGNAL BLOCK BOOLEAN Block of function BLKTR BOOLEAN Block of trip Table 23: HZPDIF (87) Output signals Name Type Description...
Section 6 1MRK 505 277-UUS C Differential protection Three functions can be used to provide a three phase differential protection function. The stabilizing resistor value is calculated from the function operating value V TripPickup calculated to achieve through fault stability. The used stabilizing resistor value is set by the setting R series.
Page 78
Section 6 1MRK 505 277-UUS C Differential protection Function Range or value Accuracy Operate time 10 ms typically at 0 to 10 x V Reset time 105 ms typically at 10 to 0 x V Critical impulse time 2 ms typically at 0 to 10 x V Technical Manual...
Section 7 1MRK 505 277-UUS C Current protection Name Type Description PU_ST1 BOOLEAN Start signal from step 1 PU_ST2 BOOLEAN Start signal from step 2 PU_ST3 BOOLEAN Start signal from step 3 PU_ST4 BOOLEAN Start signal from step 4 PU_A BOOLEAN Pickup signal from phase A PU_B...
Page 82
Section 7 1MRK 505 277-UUS C Current protection Name Values (Range) Unit Step Default Description DirModeSel2 Disabled Non-directional Directional mode of step 2 off / non- Non-directional directional / forward / reverse Forward Reverse Pickup2 5 - 2500 Phase current operate level for step 2 in % of IBase 0.000 - 60.000 0.001...
Section 7 1MRK 505 277-UUS C Current protection Table 30: OC4PTOC (51_67) Group settings (advanced) Name Values (Range) Unit Step Default Description 2ndHarmStab 5 - 100 Pickup of second harm restraint in % of Fundamental HarmRestrain1 Disabled Disabled Enable block of step 1 from harmonic restrain Enabled HarmRestrain2 Disabled...
Section 7 1MRK 505 277-UUS C Current protection 7.1.7 Operation principle The protection design can be decomposed in four parts: • The direction element • The harmonic Restraint Blocking function • The four step over current function • The mode selection If VT inputs are not available or not connected, setting parameter DirModeSelx shall be left to default value, Non-directional.
Page 85
Section 7 1MRK 505 277-UUS C Current protection overcurrent protection 3-phase output function OC4PTOC (51/67), it is possible to select the type of the measurement used for all overcurrent stages. It is possible to select either discrete Fourier filter (DFT) or true RMS filter (RMS). If DFT option is selected then only the RMS value of the fundamental frequency components of each phase current is derived.
Page 86
Section 7 1MRK 505 277-UUS C Current protection ref CA dir CA (Equation 3) ANSIEQUATION1451 V1 EN Phase-ground short circuit: dir A (Equation 4) ANSIEQUATION1452 V1 EN ref B dir B (Equation 5) ANSIEQUATION1453 V1 EN ref C dir C (Equation 6) ANSIEQUATION1454 V1 EN Technical Manual...
Page 87
Section 7 1MRK 505 277-UUS C Current protection ANSI09000636-1-en.vsd ANSI09000636 V1 EN Figure 33: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the pickup signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
Section 7 1MRK 505 277-UUS C Current protection Function Setting range Accuracy Reset time, directional pickup 35 ms typically at 2 to 0 x I function Critical impulse time 10 ms typically at 0 to 2 x I Impulse margin time 15 ms typically Note: Timing accuracy only valid when 2nd harmonic blocking is turned off Four step residual overcurrent protection, zero,...
Section 7 1MRK 505 277-UUS C Current protection Other setting combinations are possible, but not recommended. Second harmonic blocking restraint level can be set for the function and can be used to block each step individually. 7.2.3 Function block EF4PTOC (51N_67N) I3P* TRIP V3P*...
Section 7 1MRK 505 277-UUS C Current protection Table 35: EF4PTOC (51N_67N) Output signals Name Type Description TRIP BOOLEAN Common trip signal TRST1 BOOLEAN Trip signal from step 1 TRST2 BOOLEAN Trip signal from step 2 TRST3 BOOLEAN Trip signal from step 3 TRST4 BOOLEAN Trip signal from step 4...
Page 92
Section 7 1MRK 505 277-UUS C Current protection Name Values (Range) Unit Step Default Description DirModeSel1 Disabled Non-directional Directional mode of step 1 (off, non- Non-directional directional, forward, reverse) Forward Reverse Characterist1 ANSI Ext. inv. ANSI Def. Time Time delay curve type for step 1 ANSI Very inv.
Page 93
Section 7 1MRK 505 277-UUS C Current protection Name Values (Range) Unit Step Default Description HarmRestrain3 Disabled Enabled Enable block of step 3 from harmonic restrain Enabled DirModeSel4 Disabled Non-directional Directional mode of step 4 (off, non- Non-directional directional, forward, reverse) Forward Reverse Characterist4...
Section 7 1MRK 505 277-UUS C Current protection 7.2.6 Monitored data Table 38: EF4PTOC (51N_67N) Monitored data Name Type Values (Range) Unit Description STDIR INTEGER 0=No direction Fault direction coded as 1=Forward integer 2=Reverse 3=Both REAL Operating current level VPol REAL Polarizing voltage level IPol...
Section 7 1MRK 505 277-UUS C Current protection • parallel connection of current instrument transformers in all three phases (Holm-Green connection). • one single core balance, current instrument transformer (cable CT). • one single current instrument transformer located between power system WYE point and ground (that is, current transformer located in the neutral grounding of a WYE connected transformer winding).
Page 96
Section 7 1MRK 505 277-UUS C Current protection Voltage polarizing When voltage polarizing is selected the protection will use either the residual voltage or the negative sequence voltage V as polarizing quantity V3P. The residual voltage can be: directly measured (when a dedicated VT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to EF4PTOC (51N/ 67N) function input V3P).
Page 97
Section 7 1MRK 505 277-UUS C Current protection The polarizing phasor is used together with the phasor of the operating directional current, in order to determine the direction to the ground fault (Forward/Reverse). In order to enable voltage polarizing the magnitude of polarizing voltage shall be bigger than a minimum level defined by setting parameter VpolMin.
Section 7 1MRK 505 277-UUS C Current protection × × Ipol = (IA+alpha IB+alpha IC)/3 (Equation 12) ANSIEQUATION2406 V2 EN where: IA, IB and IC are fundamental frequency phasors of three individual phase currents. alpha phasor with an angle of 120 degrees. The polarizing current is pre-processed by a discrete fourier filter.
Section 7 1MRK 505 277-UUS C Current protection point and ground (current transformer located in the WYE point of a WYE connected transformer winding). • For some special line protection applications this dedicated IED CT input can be connected to parallel connection of current transformers in all three phases (Holm-Green connection).
Section 7 1MRK 505 277-UUS C Current protection Distance protection directional function. Negative sequence based overcurrent function. 7.2.7.5 Base quantities within the protection The base quantities are entered as global settings for all functions in the IED. Base current (IBase) shall be entered as rated phase current of the protected object in primary amperes.
Section 7 1MRK 505 277-UUS C Current protection available. For the complete list of available inverse curves please refer to section "Inverse time characteristics". • Time delay related settings. By these parameter settings the properties like definite time delay, minimum operating time for inverse curves and reset time delay are defined.
Page 102
Section 7 1MRK 505 277-UUS C Current protection setting polMethod. The polarizing quantity will be selected by the function in one of the following three ways: When polMethod = Voltage, VPol will be used as polarizing quantity. When polMethod = Current, IPol will be used as polarizing quantity. WhenpolMethod = Dual, VPol + IPol ·...
Page 103
Section 7 1MRK 505 277-UUS C Current protection BLKTR Characteristx=DefTime 0-tx a>b Pickupx PU_STx 0-txMin BLKx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModeSelx=Disabled DirModeSelx=Non-directional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI11000281-1-en.vsd ANSI11000281-1-en.vsd ANSI11000281 V1 EN Figure 38: Operating characteristic for ground-fault directional element using the zero sequence components Technical Manual...
Page 104
Section 7 1MRK 505 277-UUS C Current protection Operating area PUREV 0.6 * IDirPU Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for PUREV 40% of RCA +85 deg IDIR 65 deg pol = - -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
Page 105
Section 7 1MRK 505 277-UUS C Current protection PUFW=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than setting parameter IDirPU and directional supervision element detects fault in forward direction. PUREV=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than 60% of setting parameter IDirPU and directional supervision element detects fault in reverse direction.
Section 7 1MRK 505 277-UUS C Current protection 7.2.8 Technical data Table 39: EF4PTOC (51N/67N) technical data Function Range or value Accuracy lBase Operate current (1-2500)% of ± 1.0% of I at I < I ± 1.0% of I at I > I Reset ratio >...
Section 7 1MRK 505 277-UUS C Current protection Thermal overload protection, two time constants TRPTTR (49) 7.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Thermal overload protection, two time TRPTTR constants SYMBOL-A V1 EN 7.3.2 Functionality If a power transformer or generator reaches very high temperatures the equipment...
Section 7 1MRK 505 277-UUS C Current protection 7.3.4 Signals TRPTTR is not provided with external temperature sensor in first release of 650 series. The only input that influences the temperature measurement is the binary input COOLING. Table 40: TRPTTR (49) Input signals Name Type Default...
Section 7 1MRK 505 277-UUS C Current protection Name Values (Range) Unit Step Default Description Tau1High 5 - 2000 %tC1 Multiplier to TC1 when current is >IHIGH-TC1 ILowTau1 30.0 - 250.0 %IB1 100.0 Current setting for rescaling TC1 by TC1-ILOW Tau1Low 5 - 2000 %tC1...
Section 7 1MRK 505 277-UUS C Current protection 7.3.7 Operation principle The sampled analog phase currents are pre-processed and for each phase current the true RMS value of each phase current is derived. These phase current values are fed to the Thermal overload protection, two time constants (TRPTTR, 49).
Page 111
Section 7 1MRK 505 277-UUS C Current protection is the calculated temperature at the previous time step is the calculated final (steady state) temperature with the actual current final is the time step between calculation of the actual and final temperature is the set thermal time constant Tau1 or Tau2 for the protected transformer The calculated transformer relative temperature can be monitored as it is exported from the function as a real figure HEATCONT.
Page 112
Section 7 1MRK 505 277-UUS C Current protection When the current is so high that it has given a pickup signal PICKUP, the estimated time to trip is continuously calculated and given as analog output TTRIP. If this calculated time get less than the setting time Warning, set in minutes, the output WARNING is activated.
Section 7 1MRK 505 277-UUS C Current protection 7.3.8 Technical data Table 45: TRPTTR (49) technical data Function Range or value Accuracy IBase Base current 1 and 2 (30–250)% of ± 1.0% of I Operate time: = load current before overload IEC 60255–8, ±5% + 200 ms occurs æ...
Section 7 1MRK 505 277-UUS C Current protection Current check with extremely short reset time is used as check criterion to achieve high security against unnecessary operation. Contact check criteria can be used where the fault current through the breaker is small. Breaker failure protection, 3-phase activation and output (CCRBRF, 50BF) current criteria can be fulfilled by one or two phase currents the residual current, or one phase current plus residual current.
Section 7 1MRK 505 277-UUS C Current protection 7.4.5 Settings Table 48: CCRBRF (50BF) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled FunctionMode Current Current Detection principle for back-up trip Contact Current&Contact BuTripMode 2 out of 4 1 out of 3...
Section 7 1MRK 505 277-UUS C Current protection 7.4.7 Operation principle Breaker failure protection, 3-phase activation and output CCRBRF (50BF) is initiated from protection trip command, either from protection functions within the IED or from external protection devices. The initiate signal is general for all three phases. A re-trip attempt can be made after a set time delay.
Section 7 1MRK 505 277-UUS C Current protection Pickup_PH a>b FunctionMode Current Reset A Contact Time out A Current and Contact Current High A CB Closed A BFP Started A a>b Pickup_BlkCont 52a_A Contact Closed A ANSI09000977-1-en.vsd ANSI09000977 V1 EN Figure 44: Simplified logic scheme of the CCRBRF (50BF), CB position evaluation TRRET_C...
Section 7 1MRK 505 277-UUS C Current protection Function Range or value Accuracy lBase Phase current pickup for (5-200)% of ± 1.0% of I at I £ I blocking of contact ± 1.0% of I at I > I function Reset ratio >...
Section 7 1MRK 505 277-UUS C Current protection Name Values (Range) Unit Step Default Description CurrentSel Disabled Disabled Current function selection CB oper monitor Continuous monitor CurrUnsymPU 0 - 100 Unsym magn of lowest phase current compared to the highest. CurrRelPU 0 - 100 Current magnitude for release of the function...
Page 121
Section 7 1MRK 505 277-UUS C Current protection C.B. poleDiscrepancy Signal from C.B. ANSI_en05000287.vsd ANSI05000287 V1 EN Figure 47: Pole discrepancy external detection logic This binary signal is connected to a binary input of the IED. The appearance of this signal will start a timer that will give a trip signal after the set time delay.
Section 7 1MRK 505 277-UUS C Current protection PD Signal from CB EXTPDIND 150 ms 0-Trip CLOSECMD tTrip+200 ms OPENCMD CB oper monitor Unsymmetrical current detection ANSI08000014-2-en.vsd ANSI08000014 V2 EN Figure 48: Simplified block diagram of pole discrepancy function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
Section 7 1MRK 505 277-UUS C Current protection 7.5.7.2 Unsymmetrical current detection Unsymmetrical current indicated if: • any phase current is lower than CurrUnsymPU of the highest current in the three phases. • the highest phase current is greater than CurrRelPU of IBase. If these conditions are true, an unsymmetrical condition is detected.
Section 7 1MRK 505 277-UUS C Current protection 7.6.2 Functionality Negative sequence based overcurrent function (DNSPTOC, 46) may be used in power line applications where the reverse zero sequence source is weak or open, the forward source impedance is strong and it is desired to detect forward ground faults. Additionally, it is applied in applications on cables, where zero sequence impedance depends on the fault current return paths, but the cable negative sequence impedance is practically constant.
Section 7 1MRK 505 277-UUS C Current protection Name Type Default Description ENMLTOC1 BOOLEAN Enable signal for current multiplier - step1 (OC1) BLKOC2 BOOLEAN Block of over current function OC2 ENMLTOC2 BOOLEAN Enable signal for current multiplier - step 2 (OC2) Table 60: DNSPTOC (46) Output signals Name...
Section 7 1MRK 505 277-UUS C Current protection Name Values (Range) Unit Step Default Description DirMode_OC1 Non-directional Non-directional Directional mode of step 1 (non-directional, Forward forward, reverse) Reverse DirPrinc_OC1 I&V I&V Measuring on I & V or IcosPhi & V for step 1 IcosPhi&U (OC1) ActLowVolt1_VM...
Section 7 1MRK 505 277-UUS C Current protection 7.6.7 Operation principle Negative sequence based overcurrent function (DNSPTOC, 46) has two settable current levels, setting parameters PickupCurr_OC1 and PickupCurr_OC2. Both features have definite time characteristics with settings tDef_OC1 and tDef_OC2 respectively. It is possible to change the direction of these steps to forward, reverse or non-directional by setting parameters DirMode_OC1 and DirMode_OC2.
Section 8 1MRK 505 277-UUS C Voltage protection Section 8 Voltage protection Two step undervoltage protection UV2PTUV (27) 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 2U< SYMBOL-R-2U-GREATER-THAN V1 EN 8.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
Section 8 1MRK 505 277-UUS C Voltage protection 8.1.4 Signals Table 65: UV2PTUV (27) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN Block of step 1 BLK2 BOOLEAN Block of step 2...
Section 8 1MRK 505 277-UUS C Voltage protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 5.000 Minimum operate time for inverse curves for step 1 0.05 - 1.10 0.01 0.05 Time multiplier for the inverse time delay for step 1 OperationStep2 Disabled...
Section 8 1MRK 505 277-UUS C Voltage protection settable for step 1 and can be either definite or inverse time delayed. Step 2 is always definite time delayed. UV2PTUV (27) can be set to measure phase-to-ground fundamental value, phase-to- phase fundamental value, phase-to-ground true RMS value or phase-to-phase true RMS value.
Section 8 1MRK 505 277-UUS C Voltage protection < - Vpickup < Vpickup (Equation 27) ANSIEQUATION1431 V1 EN The type B curve is described as: × 0.055 æ ö Vpickup < -V × ç ÷ è ø < Vpickup (Equation 28) EQUATION1608 V1 EN The lowest voltage is always used for the inverse time delay integration.
Page 134
Section 8 1MRK 505 277-UUS C Voltage protection VA or VAB Comparator PU_ST1_A Phase A V < Pickup1 Voltage Phase Selector PU_ST1_B VB or VBC OpMode1 Comparator Phase B V < Pickup1 1 out of 3 PU_ST1_C 2 out of 3 Pickup Phase C VC or VCA...
Section 8 1MRK 505 277-UUS C Voltage protection 8.1.8 Technical data Table 70: UV2PTUV (27) technical data Function Range or value Accuracy VBase Operate voltage, low and (1–100)% of ± 0.5% of V high step Reset ratio <105% Inverse time See table characteristics for low and high step, see...
Section 8 1MRK 505 277-UUS C Voltage protection Two step overvoltage protection (OV2PTOV, 59) function can be used to detect open line ends, normally then combined with a directional reactive over-power function to supervise the system voltage. When triggered, the function will cause an alarm, switch in reactors, or switch out capacitor banks.
Section 8 1MRK 505 277-UUS C Voltage protection Name Type Description PU_ST1 BOOLEAN Start signal from step 1 PU_ST1_A BOOLEAN Pick up signal from step 1 phase A PU_ST1_B BOOLEAN Pick up signal from step 1 phase B PU_ST1_C BOOLEAN Pick up signal from step 1 phase C PU_ST2 BOOLEAN...
Section 8 1MRK 505 277-UUS C Voltage protection Table 74: OV2PTOV (59) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups ConnType PhN DFT PhN DFT Group selector for connection type PhN RMS PhPh DFT...
Section 8 1MRK 505 277-UUS C Voltage protection Vpickup VBase kV ) / 3 > ⋅ (Equation 29) EQUATION1610 V2 EN and operation for phase-to-phase voltage over: > × Vpickup (%) VBase(kV) (Equation 30) EQUATION1992 V1 EN When phase-to-ground voltage measurement is selected the function automatically introduces division of the base value by the square root of three.
Page 140
Section 8 1MRK 505 277-UUS C Voltage protection ⋅ 0 035 − V Vpickup − > ⋅ − Vpickup > (Equation 32) ANSIEQUATION2287 V2 EN The type C curve is described as: ⋅ 0 035 V Vpickup − > ⋅ −...
Section 8 1MRK 505 277-UUS C Voltage protection 8.2.7.3 Blocking It is possible to block two step overvoltage protection (OV2PTOV ,59) partially or completely, by binary input signals where: BLOCK: blocks all outputs BLK1: blocks all pickup and trip outputs related to step 1 BLK2: blocks all pickup and trip outputs related to step 2 8.2.7.4...
Page 142
Section 8 1MRK 505 277-UUS C Voltage protection Comparator PU_ST1_A VA or VAB V > Pickup1 Phase A Voltage Phase Selector PU_ST1_B Comparator OpMode1 VB or VBC Phase B V > Pickup1 1 out of 3 PU_ST1_C 2 outof 3 Pickup Phase C 3 out of 3...
Section 8 1MRK 505 277-UUS C Voltage protection 8.2.8 Technical data Table 76: OV2PTOV (59) technical data Function Range or value Accuracy VBase Operate voltage, low and (1-200)% of ± 0.5% of V at V < V high step ± 0.5% of V at V > V Reset ratio >95% Inverse time...
Section 8 1MRK 505 277-UUS C Voltage protection Two step residual overvoltage protection ROV2PTOV (59N) function calculates the residual voltage from the three-phase voltage input transformers or measures it from a single voltage input transformer fed from a broken delta or neutral point voltage transformer.
Section 8 1MRK 505 277-UUS C Voltage protection 8.3.5 Settings Table 79: ROV2PTOV (59N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time Definite time Selection of time delay curve type for step 1...
Section 8 1MRK 505 277-UUS C Voltage protection adding the input phase voltages. 3V may also be input single phase by either measuring directly from a voltage transformer in the neutral of a power transformer, or from a secondary broken delta connection of a transformer with a wye-grounded primary.
Section 8 1MRK 505 277-UUS C Voltage protection ⋅ 0 035 V Vpickup − > ⋅ − Vpickup > (Equation 36) ANSIEQUATION2288 V2 EN The details of the different inverse time characteristics are shown in section "Inverse time characteristics". TRIP signal issuing requires that the residual overvoltage condition continues for at least the user set time delay.
Section 8 1MRK 505 277-UUS C Voltage protection 8.3.8 Technical data Table 82: ROV2PTOV (59N) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V ± 0.5% of V at V > V Operate voltage, step 2 (1–100)% of VBase...
Section 9 1MRK 505 277-UUS C Secondary system supervision Section 9 Secondary system supervision Fuse failure supervision SDDRFUF 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fuse failure supervision SDDRFUF 9.1.2 Functionality The aim of the fuse failure supervision function (SDDRFUF) is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid unwanted operations that otherwise might occur.
Section 9 1MRK 505 277-UUS C Secondary system supervision A criterion based on delta current and delta voltage measurements can be added to the fuse failure supervision function in order to detect a three phase fuse failure, which in practice is more associated with voltage transformer switching during station operations. 9.1.3 Function block SDDRFUF...
Section 9 1MRK 505 277-UUS C Secondary system supervision 9.1.6 Monitored data Table 87: SDDRFUF Monitored data Name Type Values (Range) Unit Description REAL Magnitude of zero sequence current REAL Magnitude of negative sequence current REAL Magnitude of zero sequence voltage REAL Magnitude of negative...
Section 9 1MRK 505 277-UUS C Secondary system supervision Sequence Detection 3I0PU CurrZeroSeq Zero sequence filter CurrNegSeq a>b 100 ms Negative sequence filter FuseFailDetZeroSeq a>b 100 ms 3I2PU FuseFailDetNegSeq 3V0PU VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3V2PU ANSI10000036-2-en.vsd ANSI10000036 V2 EN...
Page 156
Section 9 1MRK 505 277-UUS C Secondary system supervision • The magnitude of the phase-ground voltage has been above VPPU for more than 1.5 cycle • The magnitude of DV is higher than the setting DVPU • The magnitude of DI is below the setting DIPU and at least one of the following conditions are fulfilled: •...
Page 157
Section 9 1MRK 505 277-UUS C Secondary system supervision DVDI Detection DVDI detection Phase 1 One cycle delay |DI| a>b DIPU One cycle delay |DV| a>b DVPU a>b 20 ms 1.5 cycle VPPU DVDI detection Phase 2 Same logic as for phase 1 DVDI detection Phase 3 Same logic as for phase 1 a<b...
Section 9 1MRK 505 277-UUS C Secondary system supervision 9.1.7.3 Dead line detection A simplified diagram for the functionality is found in figure 60. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values VDLDPU and IDLDPU.
Page 159
Section 9 1MRK 505 277-UUS C Secondary system supervision • V0I0 OR V2I2; Both negative and zero sequence is activated and working in parallel in an OR-condition • V0I0 AND V2I2; Both negative and zero sequence is activated and working in series (AND-condition for operation) •...
Page 160
Section 9 1MRK 505 277-UUS C Secondary system supervision prolongs the presence of MCBOP signal to prevent the unwanted operation of voltage dependent function due to non simultaneous closing of the main contacts of the miniature circuit breaker. The input signal 89b is supposed to be connected via a terminal binary input to the N.C.
Page 161
Section 9 1MRK 505 277-UUS C Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All VP < VSealInPU SealIn = Enabled Any VP < VsealInPU FuseFailDetDVDI OpDVDI = Enabled 5 sec FuseFailDetZeroSeq FuseFailDetNegSeq V2I2 V0I0...
Section 9 1MRK 505 277-UUS C Secondary system supervision Figure 61: Simplified logic diagram for fuse failure supervision function, Main logic 9.1.8 Technical data Table 88: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of VBase ±...
Section 9 1MRK 505 277-UUS C Secondary system supervision 9.2.3 Function block GUID-6F85BD70-4D18-4A00-A410-313233025F3A V2 EN Figure 62: Function block 9.2.4 Signals Table 89: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 90: TCSSCBR Output signals...
Section 9 1MRK 505 277-UUS C Secondary system supervision TCS_STATE status Timer ALARM BLOCK ANSI11000289 V1 EN Figure 63: Functional module diagram Trip circuit supervision generates a current of approximately 1.0 mA through the supervised circuit. It must be ensured that this current will not cause a latch up of the controlled object.
Section 10 1MRK 505 277-UUS C Control Section 10 Control 10.1 Apparatus control 10.1.1 Functionality The apparatus control functions are used for control and supervision of circuit breakers, disconnectors and grounding switches within a bay. Permission to operate is given after evaluation of conditions from other functions such as interlocking, synchronism check, operator place selection and external or internal blockings.
Section 10 1MRK 505 277-UUS C Control 10.1.2.3 Function block QCBAY LR_OFF PSTO LR_LOC UPD_BLKD LR_REM CMD_BLKD LR_VALID BL_UPD BL_CMD IEC09000080_1_en.vsd IEC09000080 V1 EN Figure 64: QCBAY function block 10.1.2.4 Signals Table 93: QCBAY Input signals Name Type Default Description LR_OFF BOOLEAN External Local/Remote switch is in Off position...
Section 10 1MRK 505 277-UUS C Control 10.1.3 Local remote LOCREM 10.1.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local remote LOCREM 10.1.3.2 Functionality The signals from the local HMI or from an external local/remote switch are applied via the function blocks LOCREM and LOCREMCTRL to the Bay control (QCBAY) function block.
Section 10 1MRK 505 277-UUS C Control 10.1.3.5 Settings Table 98: LOCREM Non group settings (basic) Name Values (Range) Unit Step Default Description ControlMode Internal LR-switch Internal LR-switch Control mode for internal/external LR-switch External LR-switch 10.1.4 Local remote control LOCREMCTRL 10.1.4.1 Identification Function description...
Section 10 1MRK 505 277-UUS C Control 10.1.5 Operation principle 10.1.5.1 Bay control QCBAY The functionality of the Bay control (QCBAY) function is not defined in the IEC 61850– 8–1 standard, which means that the function is a vendor specific logical node. The function sends information about the Permitted Source To Operate (PSTO) and blocking conditions to other functions within the bay for example, switch control functions, voltage control functions and measurement functions.
Section 10 1MRK 505 277-UUS C Control Table 101: PSTO values for different Local panel switch positions Local panel switch PSTO value AllPSTOValid Possible locations that shall be able to positions (configuration operate parameter) 0 = Off Not possible to operate 1 = Local FALSE Local Panel...
Section 10 1MRK 505 277-UUS C Control 10.2.2 Functionality The logic rotating switch for function selection and LHMI presentation (SLGGIO) (or the selector switch function block) is used to get a selector switch functionality similar to the one provided by a hardware selector switch. Hardware selector switches are used extensively by utilities, in order to have different functions operating on pre-set values.
Page 174
Section 10 1MRK 505 277-UUS C Control Table 103: SLGGIO Output signals Name Type Description BOOLEAN Selector switch position 1 BOOLEAN Selector switch position 2 BOOLEAN Selector switch position 3 BOOLEAN Selector switch position 4 BOOLEAN Selector switch position 5 BOOLEAN Selector switch position 6 BOOLEAN...
Section 10 1MRK 505 277-UUS C Control 10.2.5 Settings Table 104: SLGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled NrPos 2 - 32 Number of positions in the switch OutType Pulsed Steady Output type, steady or pulse...
Section 10 1MRK 505 277-UUS C Control through the PSTO input. If any operation is allowed the signal INTONE from the Fixed signal function block can be connected. SLGGIO function block has also an integer value output, that generates the actual position number. The positions and the block names are fully settable by the user.
Section 10 1MRK 505 277-UUS C Control Table 107: VSGGIO Output signals Name Type Description BLOCKED BOOLEAN The function is active but the functionality is blocked POSITION INTEGER Position indication, integer POS1 BOOLEAN Position 1 indication, logical signal POS2 BOOLEAN Position 2 indication, logical signal CMDPOS12 BOOLEAN...
Section 10 1MRK 505 277-UUS C Control It is important for indication in the SLD that the a symbol is associated with a controllable object, otherwise the symbol won't be displayed on the screen. A symbol is created and configured in GDE tool in PCM600. The PSTO input is connected to the Local remote switch to have a selection of operators place, operation from local HMI (Local) or through IEC 61850 (Remote).
Section 10 1MRK 505 277-UUS C Control 10.4.3 Function block DPGGIO OPEN POSITION CLOSE VALID IEC09000075_1_en.vsd IEC09000075 V1 EN Figure 69: DPGGIO function block 10.4.4 Signals Table 109: DPGGIO Input signals Name Type Default Description OPEN BOOLEAN Open indication CLOSE BOOLEAN Close indication VALID...
Section 10 1MRK 505 277-UUS C Control 10.5 Single point generic control 8 signals SPC8GGIO 10.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Single point generic control 8 signals SPC8GGIO 10.5.2 Functionality The Single point generic control 8 signals (SPC8GGIO) function block is a collection of 8 single point commands, designed to bring in commands from REMOTE (SCADA) to those parts of the logic configuration that do not need extensive command receiving functionality (for example, SCSWI).
Section 10 1MRK 505 277-UUS C Control 10.5.6 Operation principle The PSTO input selects the operator place (LOCAL, REMOTE or ALL). One of the eight outputs is activated based on the command sent from the operator place selected. The settings Latchedx and tPulsex (where x is the respective output) will determine if the signal will be pulsed (and how long the pulse is) or latched (steady).
Section 10 1MRK 505 277-UUS C Control Name Type Description CMDBIT4 BOOLEAN Command out bit 4 CMDBIT5 BOOLEAN Command out bit 5 CMDBIT6 BOOLEAN Command out bit 6 CMDBIT7 BOOLEAN Command out bit 7 CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9...
Section 10 1MRK 505 277-UUS C Control 10.6.6 Operation principle Automation bits function (AUTOBITS) has 32 individual outputs which each can be mapped as a Binary Output point in DNP3. The output is operated by a "Object 12" in DNP3. This object contains parameters for control-code, count, on-time and off-time. To operate an AUTOBITS output point, send a control-code of latch-On, latch-Off, pulse- On, pulse-Off, Trip or Close.
Section 10 1MRK 505 277-UUS C Control 10.7.3 Signals Table 117: I103CMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 118: I103CMD Output signals Name Type Description 16-AR BOOLEAN Information number 16, block of autorecloser 17-DIFF BOOLEAN Information number 17, block of differential protection 18-PROT...
Section 10 1MRK 505 277-UUS C Control 10.8.3 Signals Table 120: I103IEDCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 121: I103IEDCMD Output signals Name Type Description 19-LEDRS BOOLEAN Information number 19, reset LEDs 23-GRP1 BOOLEAN Information number 23, activate setting group 1 24-GRP2 BOOLEAN...
Section 10 1MRK 505 277-UUS C Control Name Values (Range) Unit Step Default Description InfNo_2 1 - 255 Information number for output 2 (1-255) InfNo_3 1 - 255 Information number for output 3 (1-255) InfNo_4 1 - 255 Information number for output 4 (1-255) InfNo_5 1 - 255 Information number for output 5 (1-255)
Section 10 1MRK 505 277-UUS C Control 10.10.4 Settings Table 128: I103GENCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 127 Function type (1-255) PulseLength 0.000 - 60.000 0.001 0.400 Pulse length InfNo 32 - 239 Information number for command output (1-255) 10.11...
Section 10 1MRK 505 277-UUS C Control 10.11.4 Settings Table 130: I103POSCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Fucntion type (1-255) InfNo 160 - 196 Information number for command output (1-255) Technical Manual...
Section 11 1MRK 505 277-UUS C Logic Section 11 Logic 11.1 Tripping logic common 3-phase output SMPPTRC (94) 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 11.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved in...
Section 11 1MRK 505 277-UUS C Logic 11.1.4 Signals Table 131: SMPPTRC (94) Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRINP_3P BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 132:...
Section 11 1MRK 505 277-UUS C Logic binary inputs, are routed. It has a single trip output (TRIP) for connection to one or more of the IEDs binary outputs, as well as to other functions within the IED requiring this signal. ANSI05000789 V2 EN Figure 78: Simplified logic diagram for three pole trip...
Section 11 1MRK 505 277-UUS C Logic 11.2.2 Functionality The Trip matrix logic TMAGGIO function is used to route trip signals and other logical output signals to the tripping logics SMPPTRC and SPTPTRC or to different output contacts on the IED. TMAGGIO output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs.
Section 11 1MRK 505 277-UUS C Logic Table 137: TMAGGIO Output signals Name Type Description OUTPUT1 BOOLEAN OR function betweeen inputs 1 to 16 OUTPUT2 BOOLEAN OR function between inputs 17 to 32 OUTPUT3 BOOLEAN OR function between inputs 1 to 32 11.2.5 Settings Table 138:...
Page 199
Section 11 1MRK 505 277-UUS C Logic always active and will delay the input to output transition by the set time. The ModeOutput for respective output decides whether the output shall be steady with an drop-off delay as set by OffDelay or if it shall give a pulse with duration set by PulseTime.
Section 11 1MRK 505 277-UUS C Logic 11.3 Configurable logic blocks 11.3.1 Standard configurable logic blocks 11.3.1.1 Functionality A number of logic blocks and timers are available for the user to adapt the configuration to the specific application needs. • OR function block.
Section 11 1MRK 505 277-UUS C Logic 11.3.1.2 OR function block Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number OR Function block Functionality The OR function is used to form general combinatory expressions with boolean variables.
Section 11 1MRK 505 277-UUS C Logic Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 11.3.1.3 Inverter function block INVERTER Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
Section 11 1MRK 505 277-UUS C Logic Functionality The pulse function can be used, for example for pulse extensions or limiting of operation of outputs. The PULSETIMER has a settable length. Function block PULSETIMER INPUT IEC09000291-1-en.vsd IEC09000291 V1 EN Figure 83: PULSETIMER function block Signals Table 143:...
Section 11 1MRK 505 277-UUS C Logic Function block GATE INPUT IEC09000295-1-en.vsd IEC09000295 V1 EN Figure 84: GATE function block Signals Table 146: GATE Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 147: GATE Output signals Name Type Description BOOLEAN...
Section 11 1MRK 505 277-UUS C Logic Signals Table 151: LOOPDELAY Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 152: LOOPDELAY Output signals Name Type Description BOOLEAN Output signal, signal is delayed one execution cycle Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
Section 11 1MRK 505 277-UUS C Logic Function block TIMERSET INPUT IEC09000290-1-en.vsd IEC09000290 V1 EN Figure 88: TIMERSET function block Signals Table 153: TIMERSET Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 154: TIMERSET Output signals Name Type Description BOOLEAN...
Section 11 1MRK 505 277-UUS C Logic Default value on all four inputs are logical 1 which makes it possible for the user to just use the required number of inputs and leave the rest un-connected. The output OUT has a default value 0 initially, which suppresses one cycle pulse if the function has been put in the wrong execution order.
Page 209
Section 11 1MRK 505 277-UUS C Logic Functionality The Set-Reset function SRMEMORY is a flip-flop with memory that can set or reset an output from two inputs respectively. Each SRMEMORY function block has two outputs, where one is inverted. The memory setting controls if the flip-flop after a power interruption will return the state it had before or if it will be reset.
Section 11 1MRK 505 277-UUS C Logic Settings Table 161: SRMEMORY Group settings (basic) Name Values (Range) Unit Step Default Description Memory Operating mode of the memory function 11.3.1.11 Reset-set with memory function block RSMEMORY Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
Section 11 1MRK 505 277-UUS C Logic Signals Table 163: RSMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 164: RSMEMORY Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings...
Section 11 1MRK 505 277-UUS C Logic 11.4 Fixed signals FXDSIGN 11.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 11.4.2 Functionality The Fixed signals function (FXDSIGN) generates a number of pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
Section 11 1MRK 505 277-UUS C Logic Name Type Description STRNULL STRING String signal with no characters ZEROSMPL GROUP SIGNAL Channel id for zero sample GRP_OFF GROUP SIGNAL Group signal fixed off 11.4.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600).
Section 11 1MRK 505 277-UUS C Logic Table 169: B16I Output signals Name Type Description INTEGER Output value 11.5.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.5.6 Monitored data Table 170: B16I Monitored data Name...
Section 11 1MRK 505 277-UUS C Logic Table 172: B16IFCVI Output signals Name Type Description INTEGER Output value 11.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.6.6 Monitored data Table 173: B16IFCVI Monitored data Name...
Section 11 1MRK 505 277-UUS C Logic Name Type Description OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 11.7.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.7.6 Operation principle Integer to boolean 16 conversion function (IB16A) is used to transform an integer into...
Section 11 1MRK 505 277-UUS C Logic Name Type Description OUT13 BOOLEAN Output 13 OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 11.8.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.8.6 Operation principle...
Section 12 1MRK 505 277-UUS C Monitoring Section 12 Monitoring 12.1 Measurements 12.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850. The possibility to continuously monitor measured values of active power, reactive power, currents, voltages, frequency, power factor etc.
Section 12 1MRK 505 277-UUS C Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • V: phase-to-phase voltage magnitude • I: phase current magnitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
Section 12 1MRK 505 277-UUS C Monitoring 12.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* V3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD V_RANGE...
Section 12 1MRK 505 277-UUS C Monitoring Name Type Description REAL Power factor magnitude of deadband value PF_RANGE INTEGER Power factor range ILAG BOOLEAN Current is lagging voltage ILEAD BOOLEAN Current is leading voltage REAL Calculated voltage magnitude of deadband value V_RANGE INTEGER Calcuated voltage range...
Page 227
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description PMax -2000.0 - 2000.0 200.0 Maximum value in % of SBase PRepTyp Cyclic Cyclic Reporting type Dead band Int deadband QMin -2000.0 - 2000.0 -200.0 Minimum value in % of SBase QMax -2000.0 - 2000.0 200.0...
Page 228
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description PDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s PZeroDb 0 - 100000 Zero point clamping PHiLim -2000.0 - 2000.0 120.0 High limit in % of SBase...
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description ILowLim 0.0 - 500.0 80.0 Low limit in % of IBase ILowLowLim 0.0 - 500.0 60.0 Low Low limit in % of IBase ILimHyst 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range (common for...
Section 12 1MRK 505 277-UUS C Monitoring Name Type Values (Range) Unit Description REAL Calculated voltage magnitude of deadband value REAL Calculated current magnitude of deadband value REAL System frequency magnitude of deadband value 12.1.3 Phase current measurement CMMXU 12.1.3.1 Identification Function description IEC 61850...
Section 12 1MRK 505 277-UUS C Monitoring Table 184: CMMXU Output signals Name Type Description REAL IA Amplitude IA_RANGE INTEGER Phase A current magnitude range IA_ANGL REAL IA Angle REAL IB Amplitude IB_RANGE INTEGER Phase B current magnitude range IB_ANGL REAL IB Angle REAL...
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description IMagComp5 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 5% of IMagComp30 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 30% of In IMagComp100 -10.000 - 10.000...
Section 12 1MRK 505 277-UUS C Monitoring VMMXU V3P* V_AB VAB_RANG VAB_ANGL V_BC VBC_RANG VBC_ANGL V_CA VCA_RANG VCA_ANGL ANSI08000223-1-en.vsd ANSI08000223 V1 EN Figure 99: VMMXU function block 12.1.4.3 Signals Table 188: VMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 189: VMMXU Output signals...
Section 12 1MRK 505 277-UUS C Monitoring 12.1.4.4 Settings Table 190: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups VLDbRepInt 1 - 300...
Section 12 1MRK 505 277-UUS C Monitoring 12.1.5 Current sequence component measurement CMSQI 12.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 12.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
Section 12 1MRK 505 277-UUS C Monitoring Name Type Description I1RANG INTEGER I1Amplitude range I1ANGL REAL I1 Angle REAL I2 Amplitude I2RANG INTEGER I2 Magnitude range I2ANGL REAL I2Angle 12.1.5.4 Settings Table 195: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default...
Section 12 1MRK 505 277-UUS C Monitoring Table 196: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
Section 12 1MRK 505 277-UUS C Monitoring 12.1.6 Voltage sequence measurement VMSQI 12.1.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Voltage sequence measurement VMSQI U1, U2, U0 SYMBOL-TT V1 EN 12.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
Section 12 1MRK 505 277-UUS C Monitoring Name Type Description V1RANG INTEGER V1 Magnitude range V1ANGL REAL U1 Angle REAL U2 Amplitude V2RANG INTEGER V2 Magnitude range V2ANGL REAL U2 Angle 12.1.6.4 Settings Table 200: VMSQI Non group settings (basic) Name Values (Range) Unit...
Section 12 1MRK 505 277-UUS C Monitoring Table 201: VMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3V0ZeroDb 0 - 100000 Zero point clamping 3V0HiHiLim 0 - 2000000 288000 High High limit (physical value) 3V0HiLim 0 - 2000000 258000 High limit (physical value) 3V0LowLim...
Section 12 1MRK 505 277-UUS C Monitoring 12.1.7 Phase-neutral voltage measurement VNMMXU 12.1.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-neutral voltage measurement VNMMXU SYMBOL-UU V1 EN 12.1.7.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
Section 12 1MRK 505 277-UUS C Monitoring Name Type Description VB_RANGE INTEGER V_B Amplitude range VB_ANGL REAL V_B Angle, magnitude of reported value REAL V_C Amplitude, magnitude of reported value VC_RANGE INTEGER V_C Amplitude range VC_ANGL REAL VC Angle, magnitude of reported value 12.1.7.4 Settings Table 205:...
Section 12 1MRK 505 277-UUS C Monitoring 12.1.7.5 Monitored data Table 207: VNMMXU Monitored data Name Type Values (Range) Unit Description REAL V_A Amplitude, magnitude of reported value VA_ANGL REAL V_A Angle, magnitude of reported value REAL V_B Amplitude, magnitude of reported value VB_ANGL REAL...
Page 244
Section 12 1MRK 505 277-UUS C Monitoring zero point clamping might be overridden by the zero point clamping used for the measurement values within CVMMXN. Continuous monitoring of the measured quantity Users can continuously monitor the measured quantity available in each function block by means of four defined operating thresholds, see figure 103.
Page 245
Section 12 1MRK 505 277-UUS C Monitoring Actual value of the measured quantity The actual value of the measured quantity is available locally and remotely. The measurement is continuous for each measured quantity separately, but the reporting of the value to the higher levels depends on the selected reporting mode. The following basic reporting modes are available: •...
Page 246
Section 12 1MRK 505 277-UUS C Monitoring Magnitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (XZeroDb), then the measuring channel reports the new value to a higher level, if this is detected by a new measured value.
Section 12 1MRK 505 277-UUS C Monitoring absolute values of these integral values are added until the pre-set value is exceeded. This occurs with the value Y2 that is reported and set as a new base for the following measurements (as well as for the values Y3, Y4 and Y5). The integral dead-band supervision is particularly suitable for monitoring signals with small variations that can last for relatively long periods.
Page 248
Section 12 1MRK 505 277-UUS C Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” A, B, C Used when three × × × phase-to-ground voltages are EQUATION1561 V1 EN available EQUATION1562 V1 EN...
Page 249
Section 12 1MRK 505 277-UUS C Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” Used when only × = × × phase-to- ground voltage is available (Equation 49) EQUATION1575 V1 EN...
Page 250
Section 12 1MRK 505 277-UUS C Monitoring Each analog output has a corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4, see section "Measurement supervision". Calibration of analog inputs Measured currents and voltages used in the CVMMXN function can be calibrated to get class 0.5 measuring accuracy.
Page 251
Section 12 1MRK 505 277-UUS C Monitoring the measured quantity. Filtering is performed in accordance with the following recursive formula: = × × Calculated (Equation 57) EQUATION1407 V1 EN where: is a new measured value (that is P, Q, S, V, I or PF) to be given out from the function is the measured value given from the measurement function in previous execution cycle is the new calculated value in the present execution cycle Calculated...
Section 12 1MRK 505 277-UUS C Monitoring Directionality CTStartPoint defines if the CTs grounding point is located towards or from the protected object under observation. If everything is properly set power is always measured towards protection object. Busbar Protected Object ANSI05000373_2_en.vsd ANSI05000373 V2 EN Figure 108:...
Section 12 1MRK 505 277-UUS C Monitoring outputs and IEC 61850. This is achieved by magnitude and angle compensation at 5, 30 and 100% of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 107. Phase currents (magnitude and angle) are available on the outputs and each magnitude output has a corresponding supervision level output (Ix_RANGE).
Section 12 1MRK 505 277-UUS C Monitoring Function Range or value Accuracy Reactive power, Q 0.1 x V < V < 1.5 x V ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
Section 12 1MRK 505 277-UUS C Monitoring Name Type Values (Range) Unit Description VALUE4 INTEGER Output of counter 4 VALUE5 INTEGER Output of counter 5 VALUE6 INTEGER Output of counter 6 12.2.7 Operation principle Event counter (CNTGGIO) has six counter inputs. CNTGGIO stores how many times each of the inputs has been activated.
Section 12 1MRK 505 277-UUS C Monitoring 12.3 Disturbance report 12.3.1 Functionality Complete and reliable information about disturbances in the primary and/or in the secondary system together with continuous event-logging is accomplished by the disturbance report functionality. Disturbance report DRPRDRE, always included in the IED, acquires sampled data of all selected analog input and binary signals connected to the function block with a, maximum of 40 analog and 96 binary signals.
Section 12 1MRK 505 277-UUS C Monitoring 12.3.2.5 Monitored data Table 216: DRPRDRE Monitored data Name Type Values (Range) Unit Description MemoryUsed INTEGER Memory usage (0-100%) UnTrigStatCh1 BOOLEAN Under level trig for analog channel 1 activated OvTrigStatCh1 BOOLEAN Over level trig for analog channel 1 activated UnTrigStatCh2 BOOLEAN...
Page 260
Section 12 1MRK 505 277-UUS C Monitoring Name Type Values (Range) Unit Description UnTrigStatCh11 BOOLEAN Under level trig for analog channel 11 activated OvTrigStatCh11 BOOLEAN Over level trig for analog channel 11 activated UnTrigStatCh12 BOOLEAN Under level trig for analog channel 12 activated OvTrigStatCh12 BOOLEAN...
Page 261
Section 12 1MRK 505 277-UUS C Monitoring Name Type Values (Range) Unit Description UnTrigStatCh22 BOOLEAN Under level trig for analog channel 22 activated OvTrigStatCh22 BOOLEAN Over level trig for analog channel 22 activated UnTrigStatCh23 BOOLEAN Under level trig for analog channel 23 activated OvTrigStatCh23 BOOLEAN...
Section 12 1MRK 505 277-UUS C Monitoring Name Type Values (Range) Unit Description UnTrigStatCh33 BOOLEAN Under level trig for analog channel 33 activated OvTrigStatCh33 BOOLEAN Over level trig for analog channel 33 activated UnTrigStatCh34 BOOLEAN Under level trig for analog channel 34 activated OvTrigStatCh34 BOOLEAN...
Section 12 1MRK 505 277-UUS C Monitoring Table 218: A1RADR Input signals Name Type Default Description GRPINPUT1 GROUP Group signal for input 1 SIGNAL GRPINPUT2 GROUP Group signal for input 2 SIGNAL GRPINPUT3 GROUP Group signal for input 3 SIGNAL GRPINPUT4 GROUP Group signal for input 4...
Page 266
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description FunType9 0 - 255 Function type for analog channel 9 (IEC-60870-5-103) InfNo9 0 - 255 Information number for analog channel 9 (IEC-60870-5-103) FunType10 0 - 255 Function type for analog channel 10 (IEC-60870-5-103) InfNo10...
Page 267
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description OverTrigOp04 Disabled Disabled Use over level trigger for analog channel 4 Enabled (on) or not (off) OverTrigLe04 0 - 5000 Over trigger level for analog channel 4 in % of signal NomValue05 0.0 - 999999.9...
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe09 0 - 200 Under trigger level for analog channel 9 in % of signal OverTrigOp09 Disabled Disabled Use over level trigger for analog channel 9 Enabled (on) or not (off) OverTrigLe09...
Section 12 1MRK 505 277-UUS C Monitoring 12.3.4.3 Signals Table 221: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL Analog channel 33 INPUT34 REAL Analog channel 34 INPUT35 REAL Analog channel 35 INPUT36 REAL...
Page 270
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
Page 271
Section 12 1MRK 505 277-UUS C Monitoring Table 223: A4RADR Non group settings (advanced) Name Values (Range) Unit Step Default Description NomValue31 0.0 - 999999.9 Nominal value for analog channel 31 UnderTrigOp31 Disabled Disabled Use under level trigger for analog channel 31 Enabled (on) or not (off) UnderTrigLe31...
Page 272
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description OverTrigOp35 Disabled Disabled Use over level trigger for analog channel 35 Enabled (on) or not (off) OverTrigLe35 0 - 5000 Over trigger level for analog channel 35 in % of signal NomValue36 0.0 - 999999.9...
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe40 0 - 200 Under trigger level for analog channel 40 in % of signal OverTrigOp40 Disabled Disabled Use over level trigger for analog channel 40 Enabled (on) or not (off) OverTrigLe40...
Section 12 1MRK 505 277-UUS C Monitoring 12.3.5.3 Signals B1RBDR - B6RBDR Input signals Tables for input signals for B1RBDR - B6RBDR are all similar except for INPUT and description number. • B1RBDR, INPUT1 - INPUT16 • B2RBDR, INPUT17 - INPUT32 •...
Page 275
Section 12 1MRK 505 277-UUS C Monitoring • B4RBDR, channel49 - channel64 • B5RBDR, channel65 - channel80 • B6RBDR, channel81 - channel96 Table 225: B1RBDR Non group settings (basic) Name Values (Range) Unit Step Default Description TrigDR01 Disabled Disabled Trigger operation On/Off Enabled SetLED01 Disabled...
Page 276
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description TrigDR08 Disabled Disabled Trigger operation On/Off Enabled SetLED08 Disabled Disabled Set LED on HMI for binary channel 8 Start Trip Pick up and trip TrigDR09 Disabled Disabled Trigger operation On/Off Enabled...
Page 277
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description TrigDR16 Disabled Disabled Trigger operation On/Off Enabled SetLED16 Disabled Disabled Set LED on HMI for binary channel 16 Start Trip Pick up and trip FunType1 0 - 255 Function type for binary channel 1 (IEC -60870-5-103) InfNo1...
Page 278
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description FunType11 0 - 255 Function type for binary channel 11 (IEC -60870-5-103) InfNo11 0 - 255 Information number for binary channel 11 (IEC -60870-5-103) FunType12 0 - 255 Function type for binary channel 12 (IEC -60870-5-103) InfNo12...
Page 279
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description TrigLevel05 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope Trig on 1 for binary input 5 IndicationMa05 Hide Hide Indication mask for binary channel 5 Show TrigLevel06 Trig on 0...
Section 12 1MRK 505 277-UUS C Monitoring Name Values (Range) Unit Step Default Description IndicationMa15 Hide Hide Indication mask for binary channel 15 Show TrigLevel16 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope Trig on 1 for binary input 16 IndicationMa16 Hide...
Page 281
Section 12 1MRK 505 277-UUS C Monitoring A1-4RADR Disturbance Report A4RADR DRPRDRE Analog signals Trip value rec B1-6RBDR Disturbance recorder Binary signals B6RBDR Sequential of events Event recorder Indications ANSI09000337-1-en.vsd ANSI09000337 V1 EN Figure 114: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
Section 12 1MRK 505 277-UUS C Monitoring The IED flash disk should NOT be used to store any user files. This might cause disturbance recordings to be deleted due to lack of disk space. 12.3.6.1 Disturbance information Date and time of the disturbance, the indications, events, fault location and the trip values are available on the local HMI.
Section 12 1MRK 505 277-UUS C Monitoring 12.3.6.7 Time tagging The IED has a built-in real-time calendar and clock. This function is used for all time tagging within the disturbance report 12.3.6.8 Recording times Disturbance report DRPRDRE records information about a disturbance during a settable time frame.
Section 12 1MRK 505 277-UUS C Monitoring 12.3.6.9 Analog signals Up to 40 analog signals can be selected for recording by the Disturbance recorder and triggering of the Disturbance report function. Out of these 40, 30 are reserved for external analog signals from analog input modules via preprocessing function blocks (SMAI) and summation block (3PHSUM).
Section 12 1MRK 505 277-UUS C Monitoring The preprocessor function block (SMAI) calculates the residual quantities in cases where only the three phases are connected (AI4-input not used). SMAI makes the information available as a group signal output, phase outputs and calculated residual output (AIN-output).
Section 12 1MRK 505 277-UUS C Monitoring fulfilled, there is no disturbance report, no indications, and so on. This implies the importance of choosing the right signals as trigger conditions. A trigger can be of type: • Manual trigger • Binary-signal trigger •...
Section 12 1MRK 505 277-UUS C Monitoring under certain circumstances the fault condition may reoccur during the post-fault recording, for instance by automatic reclosing to a still faulty power line. In order to capture the new disturbance it is possible to allow retriggering (PostRetrig = Enabled) during the post-fault time.
Section 12 1MRK 505 277-UUS C Monitoring 12.4 Indications 12.4.1 Functionality To get fast, condensed and reliable information about disturbances in the primary and/ or in the secondary system it is important to know, for example binary signals that have changed status during a disturbance. This information is used in the short perspective to get information via the local HMI in a straightforward way.
Section 12 1MRK 505 277-UUS C Monitoring Function controlled by SetLEDn setting in Disturbance report function. Indication list: The possible indication signals are the same as the ones chosen for the disturbance report function and disturbance recorder. The indication function tracks 0 to 1 changes of binary signals during the recording period of the collection window.
Section 12 1MRK 505 277-UUS C Monitoring The event recorder logs all selected binary input signals connected to the Disturbance report function. Each recording can contain up to 150 time-tagged events. The event recorder information is available for the disturbances locally in the IED. The event recording information is an integrated part of the disturbance record (Comtrade file).
Section 12 1MRK 505 277-UUS C Monitoring 12.5.5 Technical data Table 229: DRPRDRE technical data Function Value Buffer capacity Maximum number of events in disturbance report Maximum number of disturbance reports Resolution 1 ms Accuracy Depending on time synchronizing 12.6 Sequential of events 12.6.1 Functionality...
Section 12 1MRK 505 277-UUS C Monitoring The list can be configured to show oldest or newest events first with a setting on the local HMI. The sequential of events function runs continuously, in contrast to the event recorder function, which is only active during a disturbance, and each event record is an integral part of its associated DR.
Section 12 1MRK 505 277-UUS C Monitoring 12.7.3 Signals 12.7.3.1 Input signals The trip value recorder function uses analog input signals connected to A1RADR to A3RADR (not A4RADR). 12.7.4 Operation principle Trip value recorder calculates and presents both fault and pre-fault magnitudes as well as the phase angles of all the selected analog input signals.
Section 12 1MRK 505 277-UUS C Monitoring 12.8 Disturbance recorder 12.8.1 Functionality The Disturbance recorder function supplies fast, complete and reliable information about disturbances in the power system. It facilitates understanding system behavior and related primary and secondary equipment during and after a disturbance. Recorded information is used for different purposes in the short perspective (for example corrective actions) and long perspective (for example functional analysis).
Section 12 1MRK 505 277-UUS C Monitoring Disturbance recorder collects analog values and binary signals continuously, in a cyclic buffer. The pre-fault buffer operates according to the FIFO principle; old data will continuously be overwritten as new data arrives when the buffer is full. The size of this buffer is determined by the set pre-fault recording time.
Page 296
Section 12 1MRK 505 277-UUS C Monitoring The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions. The Disturbance handling tool use this information and present the recording in a user- friendly way.
Section 12 1MRK 505 277-UUS C Monitoring 12.8.6 Technical data Table 232: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number 340 seconds (100 of channels, typical value) recordings) at 50 Hz...
Section 12 1MRK 505 277-UUS C Monitoring 12.9.4 Signals Table 233: SPGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input status 12.9.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
Section 12 1MRK 505 277-UUS C Monitoring 12.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 12.10.6 MonitoredData Table 235: SP16GGIO Monitored data Name Type Values (Range) Unit Description OUT1 GROUP Output 1 status...
Section 12 1MRK 505 277-UUS C Monitoring 12.10.7 Operation principle Upon receiving signals at its inputs, IEC 61850 generic communication I/O functions 16 inputs (SP16GGIO) function will send the signals over IEC 61850-8-1 to the equipment or system that requests this signals. To be able to get the signal, one must use other tools, described in the Engineering manual and define which function block in which equipment or system should receive this information.
Section 12 1MRK 505 277-UUS C Monitoring 12.11.4 Signals Table 236: MVGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function REAL Analog input value Table 237: MVGGIO Output signals Name Type Description VALUE REAL Magnitude of deadband value RANGE INTEGER Range...
Section 12 1MRK 505 277-UUS C Monitoring 12.11.6 Monitored data Table 239: MVGGIO Monitored data Name Type Values (Range) Unit Description VALUE REAL Magnitude of deadband value RANGE INTEGER 0=Normal Range 1=High 2=Low 3=High-High 4=Low-Low 12.11.7 Operation principle Upon receiving an analog signal at its input, IEC61850 generic communication I/O functions (MVGGIO) will give the instantaneous value of the signal and the range, as output values.
Section 12 1MRK 505 277-UUS C Monitoring 12.12.3 Function block MVEXP RANGE* HIGHHIGH HIGH NORMAL LOWLOW IEC09000215-1-en.vsd IEC09000215 V1 EN Figure 119: MVEXP function block 12.12.4 Signals Table 240: MVEXP Input signals Name Type Default Description RANGE INTEGER Measured value range Table 241: MVEXP Output signals Name...
Section 12 1MRK 505 277-UUS C Monitoring Table 242: Input integer value converted to binary output signals Measured supervised below low-low between low‐ between low between high- above high-high value is: limit low and low and high limit high and high limit limit limit...
Section 12 1MRK 505 277-UUS C Monitoring The compensation includes setting of the remote and local sources and calculation of the distribution of fault currents from each side. This distribution of fault current, together with recorded load (pre-fault) currents, is used to exactly calculate the fault position.
Section 12 1MRK 505 277-UUS C Monitoring Name Type Description BCD_20 BOOLEAN Distance in binary coded data, bit represents 20% BCD_10 BOOLEAN Distance in binary coded data, bit represents 10% BCD_8 BOOLEAN Distance in binary coded data, bit represents 8% BCD_4 BOOLEAN Distance in binary coded data, bit represents 4%...
Section 12 1MRK 505 277-UUS C Monitoring DRPRDRE ANSI09000726-1-en.vsd LMBRFLO ANSI09000726 V1 EN Figure 121: Simplified network configuration with network data, required for settings of the fault location-measuring function If source impedance in the near and far end of the protected line have changed in a significant manner relative to the set values at fault location calculation time (due to exceptional switching state in the immediate network, power generation out of order, and so on), new values can be entered via the local HMI and a recalculation of the...
Page 310
Section 12 1MRK 505 277-UUS C Monitoring (1-p).Z xx01000171_ansi.vsd ANSI01000171 V1 EN Figure 122: Fault on transmission line fed from both ends From figure it is evident that: × × + × I p Z (Equation 58) EQUATION1595 V1 EN Where: is the line current after the fault, that is, pre-fault current plus current change due to the fault, is the fault current and...
Page 311
Section 12 1MRK 505 277-UUS C Monitoring × – ----------------------------------------- (Equation 60) EQUATION97 V1 EN Thus, the general fault location equation for a single line is: × × × I p Z (Equation 61) EQUATION1596 V1 EN Table 248: Expressions for V and I for different types of faults Fault type:...
Page 312
Section 12 1MRK 505 277-UUS C Monitoring × × × × I p Z (Equation 63) EQUATION1600 V1 EN Where: is a zero sequence current of the parallel line, is a mutual zero sequence impedance and is the distribution factor of the parallel line, which is: ×...
Section 12 1MRK 505 277-UUS C Monitoring æ ö × --------------- - -------------------------- - è ø × A DD (Equation 68) EQUATION106 V1 EN and: • for parallel lines. • and V are given in the above table. • is calculated automatically according to equation 64. •...
Section 12 1MRK 505 277-UUS C Monitoring = × × × (Equation 71) EQUATION1603 V1 EN Where: is according to table 248. The accuracy of the distance-to-fault calculation, using the non-compensated impedance model, is influenced by the pre-fault load current. So, this method is only used if the load compensated models do not function.
Section 12 1MRK 505 277-UUS C Monitoring 12.14.2 Function block SPVNZBAT V_BATT AL_VLOW BLOCK AL_VHI PU_VLOW PU_VHI ANSI12000026-1-en.vsd ANSI12000026 V1 EN Figure 123: Function block 12.14.3 Functionality The station battery supervision function SPVNZBAT is used for monitoring battery terminal voltage. SPVNZBAT activates the start and alarm outputs when the battery terminal voltage exceeds the set upper limit or drops below the set lower limit.
Section 12 1MRK 505 277-UUS C Monitoring 12.14.5 Settings Table 252: SPVNZBAT Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Disable/Enable Operation Enabled RtdBattVolt 20.00 - 250.00 1.00 110.00 Battery rated voltage BattVoltLowLim 60 - 140 %Vbat Lower limit for the battery terminal voltage BattVoltHiLim...
Page 317
Section 12 1MRK 505 277-UUS C Monitoring Comparator PU_VLOW V<BattVoltLowLim 0-tDelay AL_VLOW V_BATT 0-tReset Comparator PU_VHI U<BattVoltHiLim 0-tDelay AL_VHI 0-tReset ANSI11000292-1-en.vsd ANSI11000292 V1 EN Figure 124: Functional module diagram The battery rated voltage is set with the RtdBattVolt setting. The value of the BattVoltLowLim and BattVoltHiLim settings are given in relative per unit to the RtdBattVolt setting.
Section 12 1MRK 505 277-UUS C Monitoring 12.14.9 Technical data Table 255: SPVNZBAT Technical data Function Range or value Accuracy Lower limit for the battery (60-140) % of Vbat ± 1.0% of set battery voltage terminal voltage Reset ratio, lower limit <105 % Upper limit for the battery (60-140) % of Vbat...
Section 12 1MRK 505 277-UUS C Monitoring 12.15.4 Signals Inputs PRESSURE and TEMP together with settings PressAlmLimit, PressLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series. 12.15.4.1 SSIMG InputSignals Table 256: Input signals for the function block SSIMG (GM01-) Signal Description BLOCK...
Section 12 1MRK 505 277-UUS C Monitoring 12.15.5 Settings 12.15.5.1 SSIMG Settings Table 258: Basic parameter group settings for the function SSIMG (GM01-) Parameter Range Step Default Unit Description Operation Operation Off / On PressAlmLimit 0.00 - 25.00 0.01 5.00 Alarm setting for pressure PressLOLimit 0.00 - 25.00...
Section 12 1MRK 505 277-UUS C Monitoring the gas pressure. If the gas pressure in the circuit breaker goes below the levels for more than the set time delays the corresponding signals, PRES_ALM, pressure below alarm level and PRES_LO, pressure below lockout level alarm will be obtained. The input signal BLK_ALM is used to block the two alarms and the input signal BLOCK to block both alarms and the function.
Section 12 1MRK 505 277-UUS C Monitoring 12.16.3 Function block SSIML (71) BLOCK LEVEL BLK_ALM LVL_ALM LEVEL LVL_LO TEMP TEMP LVL_ALM TEMP_ALM LEVEL_LO TEMP_LO SET_L_LO SET_T_LO RESET_LO ANSI09000128-1-en.vsd ANSI09000128 V1 EN Figure 126: SSIML (71) function block 12.16.4 Signals Inputs LEVEL and TEMP together with settings LevelAlmLimit, LevelLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series.
Section 12 1MRK 505 277-UUS C Monitoring 12.16.4.2 SSIML OutputSignals Table 261: Output signals for the function block SSIML (LM1-) Signal Description LEVEL Level service value LVL_ALM Level below alarm level LVL_LO Level below lockout level TEMP Temperature of the insulation medium TEMP_ALM Temperature above alarm level TEMP_LO...
Section 12 1MRK 505 277-UUS C Monitoring 12.16.6 Operation principle Insulation liquid monitoring function SSIML (71) is used to monitor oil level in the circuit breaker. Two binary output signals are used from the circuit breaker to initiate alarm signals, level below alarm level and level below lockout level. If the input signal LVL_ALM is high, which indicate that the oil level in the circuit breaker is below alarm level, the output signal LVL_ALM, level below alarm level, will be initiated after a set time delay and indicate that maintenance of the circuit breaker is required.
Section 12 1MRK 505 277-UUS C Monitoring 12.17.2 Functionality The circuit breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. For proper functioning of the circuit breaker, it is essential to monitor the circuit breaker operation, spring charge indication, breaker wear, travel time, number of operation cycles and accumulated energy.
Section 12 1MRK 505 277-UUS C Monitoring Name Type Default Description SPRCHRGN BOOLEAN CB spring charging started input SPRCHRGD BOOLEAN CB spring charged input CBCNTRST BOOLEAN Reset input for CB remaining life and operation counter IACCRST BOOLEAN Reset accumulated currents power SPCHTRST BOOLEAN Reset spring charge time...
Section 12 1MRK 505 277-UUS C Monitoring Name Type Values (Range) Unit Description NOOPRDAY INTEGER The number of days CB has been inactive CBLIFE_A INTEGER CB Remaining life phase A CBLIFE_B INTEGER CB Remaining life phase B CBLIFE_C INTEGER CB Remaining life phase C IACC_A REAL Accumulated currents power...
Section 12 1MRK 505 277-UUS C Monitoring the breaker status monitoring can be described by using a module diagram. All the modules in the diagram are explained in the next sections. POSCLOSE CBOPEN Contact POSOPEN position CBINVPOS indicator Phase current check GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B-ANSI V1 EN Figure 129:...
Section 12 1MRK 505 277-UUS C Monitoring GUID-82C88B52-1812-477F-8B1A-3011A300547A V1 EN Figure 130: Functional module diagram for calculating inactive days and alarm for circuit breaker operation monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state.
Page 332
Section 12 1MRK 505 277-UUS C Monitoring Traveling time calculator The contact travel time of the breaker is calculated from the time between auxiliary contacts' state change. The open travel time is measured between the opening of the POSCLOSE auxiliary contact and the closing of the POSOPEN auxiliary contact. Travel time is also measured between the opening of the POSOPEN auxiliary contact and the closing of the POSCLOSE auxiliary contact.
Section 12 1MRK 505 277-UUS C Monitoring 12.17.7.4 Operation counter The operation counter subfunction calculates the number of breaker operation cycles. Both open and close operations are included in one operation cycle. The operation counter value is updated after each open operation. The operation of the subfunction can be described by using a module diagram.
Page 334
Section 12 1MRK 505 277-UUS C Monitoring IACCLOAL Accumula- Alarm limit ted energy check calculator IACCALM POSCLOSE IACCRST BLOCK BLK_ALM GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A-ANSI V1 EN Figure 133: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s].
Section 12 1MRK 505 277-UUS C Monitoring can be reset by setting the Clear accum. breaking curr setting to true in the clear menu from LHMI. Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting.
Section 12 1MRK 505 277-UUS C Monitoring of operations the breaker can perform at the rated current and at the rated fault current, respectively. The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFE_A (_B, _C).
Section 12 1MRK 505 277-UUS C Monitoring Spring charge time measurement Two binary inputs, SPRCHRGN and SPRCHRGD, indicate spring charging started and spring charged, respectively. The spring charging time is calculated from the difference of these two signal timings. The spring charging time SPRCHRT is available through the Monitored data view . Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm.
Section 12 1MRK 505 277-UUS C Monitoring The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates all outputs and resets internal timers. The alarm signals from the function can be blocked by activating the binary input BLK_ALM. 12.17.8 Technical data Table 268:...
Section 12 1MRK 505 277-UUS C Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 138: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
Section 12 1MRK 505 277-UUS C Monitoring 12.18.3 Signals Table 269: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase A REAL Service value for current phase B REAL Service value for current phase C REAL Service value for residual current IN...
Section 12 1MRK 505 277-UUS C Monitoring 12.19 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 12.19.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
Section 12 1MRK 505 277-UUS C Monitoring 12.19.4 Settings Table 272: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
Section 12 1MRK 505 277-UUS C Monitoring 12.20.2 Function block I103AR BLOCK 16_ARACT 128_CBON 130_UNSU IEC10000289-1-en.vsd IEC10000289 V1 EN Figure 141: I103AR function block 12.20.3 Signals Table 273: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active...
Section 12 1MRK 505 277-UUS C Monitoring 12.21.2 Function block I103EF BLOCK 51_EFFW 52_EFREV IEC10000290-1-en.vsd IEC10000290 V1 EN Figure 142: I103EF function block 12.21.3 Signals Table 275: I103EF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 51_EFFW BOOLEAN Information number 51, ground-fault forward...
Section 12 1MRK 505 277-UUS C Monitoring Name Type Default Description 73_SCL REAL Information number 73, fault location in ohm 74_FW BOOLEAN Information number 74, forward/line 75_REV BOOLEAN Information number 75, reverse/busbar 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1...
Section 12 1MRK 505 277-UUS C Monitoring 12.23 IED status for IEC 60870-5-103 I103IED 12.23.1 Functionality I103IED is a function block with defined IED functions in monitor direction. This block uses parameter as FunctionType, and information number parameter is defined for each input signal.
Section 12 1MRK 505 277-UUS C Monitoring 12.24 Supervison status for IEC 60870-5-103 I103SUPERV 12.24.1 Functionality I103SUPERV is a function block with defined functions for supervision indications in monitor direction. This block includes the FunctionType parameter, and the information number parameter is defined for each output signal. 12.24.2 Function block I103SUPERV...
Section 12 1MRK 505 277-UUS C Monitoring 12.25 Status for user defined signals for IEC 60870-5-103 I103USRDEF 12.25.1 Functionality I103USRDEF is a function blocks with user defined input signals in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the information number parameter for each input signal.
Section 13 1MRK 505 277-UUS C Metering Section 13 Metering 13.1 Pulse counter PCGGIO 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 13.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
Section 13 1MRK 505 277-UUS C Metering 13.1.6 Monitored data Table 288: PCGGIO Monitored data Name Type Values (Range) Unit Description CNT_VAL INTEGER Actual pulse counter value SCAL_VAL REAL Scaled value with time and status information 13.1.7 Operation principle The registration of pulses is done according to setting of CountCriteria parameter on one of the 9 binary input channels located on the BIO module.
Section 13 1MRK 505 277-UUS C Metering READ_VAL performs readings according to the setting of parameter CountCriteria. The signal must be a pulse with a length >1 second. The BI_PULSE input is connected to the used input of the function block for the binary input output module (BIO).
Section 13 1MRK 505 277-UUS C Metering 13.2 Energy calculation and demand handling ETPMMTR 13.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Energy calculation and demand ETPMMTR handling IEC10000169 V1 EN 13.2.2 Functionality Outputs from the Measurements (CVMMXN) function can be used to calculate energy consumption.
Section 13 1MRK 505 277-UUS C Metering 13.2.4 Signals Table 290: ETPMMTR Input signals Name Type Default Description REAL Measured active power REAL Measured reactive power STACC BOOLEAN Start to accumulate energy values RSTACC BOOLEAN Reset of accumulated enery reading RSTDMD BOOLEAN Reset of maximum demand reading...
Section 13 1MRK 505 277-UUS C Metering 13.2.5 Settings Table 292: ETPMMTR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled StartAcc Disabled Disabled Activate the accumulation of energy values Enabled tEnergy 1 Minute 1 Minute Time interval for energy calculation...
Section 13 1MRK 505 277-UUS C Metering 13.2.6 Monitored data Table 294: ETPMMTR Monitored data Name Type Values (Range) Unit Description EAFACC REAL Accumulated forward active energy value EARACC REAL Accumulated reverse active energy value ERFACC REAL MVArh Accumulated forward reactive energy value ERRACC REAL...
Section 13 1MRK 505 277-UUS C Metering ETPMMTR CVMMXN P_INST Q_INST STACC TRUE RSTACC FALSE RSTDMD FALSE IEC09000106.vsd IEC09000106 V1 EN Figure 150: Connection of Energy calculation and demand handling function (ETPMMTR) to the Measurements function (CVMMXN) 13.2.8 Technical data Table 295: ETPMMTR technical data Function...
Section 14 1MRK 505 277-UUS C Station communication Section 14 Station communication 14.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 14.2 IEC 61850-8-1 communication protocol 14.2.1...
Section 14 1MRK 505 277-UUS C Station communication interoperates with other IEC 61850-compliant IEDs, tools, and systems and simultaneously reports events to five different clients on the IEC 61850 station bus. The event system has a rate limiter to reduce CPU load. The event channel has a quota of 10 events/second.
Section 14 1MRK 505 277-UUS C Station communication 14.2.5 Technical data Table 298: Communication protocol Function Value Protocol TCP/IP Ethernet Communication speed for the IEDs 100 Mbit/s Protocol IEC 61850–8–1 Communication speed for the IEDs 100BASE-FX Protocol DNP3.0/TCP Communication speed for the IEDs 100BASE-FX Protocol, serial IEC 60870–5–103...
Page 365
Section 14 1MRK 505 277-UUS C Station communication Table 300: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
Section 14 1MRK 505 277-UUS C Station communication Name Type Description APP12_OP BOOLEAN Apparatus 12 position is open APP12_CL BOOLEAN Apparatus 12 position is closed APP12VAL BOOLEAN Apparatus 12 position is valid APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL...
Section 14 1MRK 505 277-UUS C Station communication Name Type Description OUT3 BOOLEAN Binary output 3 OUT3VAL BOOLEAN Valid data on binary output 3 OUT4 BOOLEAN Binary output 4 OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5...
Section 14 1MRK 505 277-UUS C Station communication 14.5 GOOSE function block to receive a double point value GOOSEDPRCV 14.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive a GOOSEDPRCV double point value 14.5.2 Functionality...
Section 14 1MRK 505 277-UUS C Station communication 14.5.5 Settings Table 307: GOOSEDPRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled 14.5.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
Section 14 1MRK 505 277-UUS C Station communication 14.6.2 Functionality GOOSEINTRCV is used to receive an integer value using IEC61850 protocol via GOOSE. 14.6.3 Function block GOOSEINTRCV BLOCK ^INTOUT DATAVALID COMMVALID TEST IEC10000250-1-en.vsd IEC10000250 V1 EN Figure 154: GOOSEINTRCV function block 14.6.4 Signals Table 308:...
Section 14 1MRK 505 277-UUS C Station communication The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen. The TEST output will go HIGH if the sending IED is in test mode. The input of this GOOSE block must be linked in SMT by means of a cross to receive the integer values.
Section 14 1MRK 505 277-UUS C Station communication 14.7.4 Signals Table 311: GOOSEMVRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 312: GOOSEMVRCV Output signals Name Type Description MVOUT REAL Measurand value output DATAVALID BOOLEAN Data valid for measurand value output COMMVALID BOOLEAN Communication valid for measurand value output...
Section 14 1MRK 505 277-UUS C Station communication 14.8 GOOSE function block to receive a single point value GOOSESPRCV 14.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive a GOOSESPRCV single point value 14.8.2 Functionality...
Section 14 1MRK 505 277-UUS C Station communication 14.8.5 Settings Table 316: GOOSESPRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Off/On Enabled 14.8.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
Section 14 1MRK 505 277-UUS C Station communication IEC 60870-5-103 protocol can be configured to use either the optical serial or RS485 serial communication interface on the COM05 communication module. The functions Operation selection for optical serial (OPTICALPROT) and Operation selection for RS485 (RS485PROT) are used to select the communication interface.
Page 377
Section 14 1MRK 505 277-UUS C Station communication Name Values (Range) Unit Step Default Description MasterTimeDomain Master time domain Local Local with DST TimeSyncMode IEDTime IEDTime Time synchronization mode LinMastTime IEDTimeSkew EvalTimeAccuracy Disabled Evaluate time accuracy for invalid time 10ms 20ms 40ms EventRepMode...
Section 15 1MRK 505 277-UUS C Basic IED functions Section 15 Basic IED functions 15.1 Self supervision with internal event list 15.1.1 Functionality The Self supervision with internal event list (INTERRSIG and SELFSUPEVLST) function reacts to internal system events generated by the different built-in self- supervision elements.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.1.2.3 Signals Table 319: INTERRSIG Output signals Name Type Description FAIL BOOLEAN Internal fail WARNING BOOLEAN Internal warning TSYNCERR BOOLEAN Time synchronization error RTCERR BOOLEAN Real time clock error DISABLE BOOLEAN Application Disable 15.1.2.4 Settings...
Page 381
Section 15 1MRK 505 277-UUS C Basic IED functions menu/Diagnostics/Internal events or Main menu/Diagnostics/IED status/General. The information from the self-supervision function is also available in the Event Viewer in PCM600. Both events from the Event list and the internal events are listed in time consecutive order in the Event Viewer.
Page 382
Section 15 1MRK 505 277-UUS C Basic IED functions LIODEV FAIL LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED IOM2- ERROR SW Watchdog Error Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK GENTS RTC ERROR...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.1.4.1 Internal signals SELFSUPEVLST function provides several status signals, that tells about the condition of the IED. As they provide information about the internal status of the IED, they are also called internal signals. The internal signals can be divided into two groups. •...
Section 15 1MRK 505 277-UUS C Basic IED functions Table 322: Explanations of internal signals Name of signal Reasons for activation Internal Fail This signal will be active if one or more of the following internal signals are active; Real Time Clock Error, Runtime App Error, Runtime Exec Error, SW Watchdog Error, File System Error Internal Warning This signal will be active if one or more of the following internal...
Section 15 1MRK 505 277-UUS C Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 160: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.2 Time synchronization 15.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.2.3.2 Settings Table 325: SNTP Non group settings (basic) Name Values (Range) Unit Step Default Description ServerIP-Add 0 - 255 0.0.0.0 Server IP-address Address RedServIP-Add 0 - 255 0.0.0.0 Redundant server IP-address Address 15.2.4 Time system, summer time begin DSTBEGIN...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.2.4.2 Settings Table 326: DSTBEGIN Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January March Month in year when daylight time starts February March April June July August September October...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.2.5.2 Settings Table 327: DSTEND Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January October Month in year when daylight time ends February March April June July August September October...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.2.7 Time synchronization via IRIG-B 15.2.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time synchronization via IRIG-B IRIG-B 15.2.7.2 Settings Table 329: IRIG-B Non group settings (basic) Name Values (Range) Unit...
Page 391
Section 15 1MRK 505 277-UUS C Basic IED functions Design of the time system (clock synchronization) External Time tagging and general synchronization synchronization sources Protection Commu Events and control Disabled - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 ANSI09000210-1-en.vsd ANSI09000210 V1 EN Figure 161:...
Section 15 1MRK 505 277-UUS C Basic IED functions • The maximum error of the last used synchronization message • The time since the last used synchronization message • The rate accuracy of the internal clock in the function. 15.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second.
Section 15 1MRK 505 277-UUS C Basic IED functions Rate accuracy In the IED, the rate accuracy at cold start is 100 ppm but if the IED is synchronized for a while, the rate accuracy is approximately 1 ppm if the surrounding temperature is constant.
Section 15 1MRK 505 277-UUS C Basic IED functions If the x in 00x is 4, 5, 6 or 7, the time message from IRIG-B contains information of the year. If x is 0, 1, 2 or 3, the information contains only the time within the year, and year information has to come from the tool or local HMI.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.3.3.3 Signals Table 332: ACTVGRP Input signals Name Type Default Description ACTGRP1 BOOLEAN Selects setting group 1 as active ACTGRP2 BOOLEAN Selects setting group 2 as active ACTGRP3 BOOLEAN Selects setting group 3 as active ACTGRP4 BOOLEAN Selects setting group 4 as active...
Section 15 1MRK 505 277-UUS C Basic IED functions More than one input may be activated at the same time. In such cases the lower order setting group has priority. This means that if for example both group four and group two are set to activate, group two will be the one activated.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.4.2 Functionality When the Test mode functionality TESTMODE is activated, all the functions in the IED are automatically blocked. It is then possible to unblock every function(s) individually from the local HMI to perform required tests. When leaving TESTMODE, all blockings are removed and the IED resumes normal operation.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.4.5 Settings Table 336: TESTMODE Non group settings (basic) Name Values (Range) Unit Step Default Description TestMode Disabled Disabled Test mode in operation (Enabled) or not Enabled (Disabled) EventDisable Disabled Disabled Event disable during testmode Enabled CmdTestBit...
CHNGLCK input, that logic must be designed so that it cannot permanently issue a logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action. Technical Manual...
Section 15 1MRK 505 277-UUS C Basic IED functions • Set system time • Enter and exit from test mode • Change of active setting group The binary input signal LOCK controlling the function is defined in ACT or SMT: Binary input Function Activated...
Section 15 1MRK 505 277-UUS C Basic IED functions Name Values (Range) Unit Step Default Description UnitName 0 - 18 Unit name Unit name UnitNumber 0 - 99999 Unit number TechnicalKey 0 - 18 AA0J0Q0A0 Technical key 15.7 Product information 15.7.1 Identification Function description...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.8 Primary system values PRIMVAL 15.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Primary system values PRIMVAL 15.8.2 Functionality The rated system frequency and phasor rotation are set under Main menu/ Configuration/ Power system/ Primary values/PRIMVAL in the local HMI and PCM600 parameter setting tree.
Section 15 1MRK 505 277-UUS C Basic IED functions to a SMAI function block shall always have the same cycle time as the SMAI block. 15.9.2 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Signal matrix for analog inputs SMAI_20_x 15.9.3 Function block...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.9.4 Signals Table 341: SMAI_20_1 Input signals Name Type Default Description BLOCK BOOLEAN Block group 1 DFTSPFC REAL 20.0 Number of samples per fundamental cycle used for DFT calculation REVROT BOOLEAN Reverse rotation group 1 GRP1_A STRING...
Section 15 1MRK 505 277-UUS C Basic IED functions Table 344: SMAI_20_12 Output signals Name Type Description AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs 1-4 GROUP SIGNAL Quantity connected to the first analog input GROUP SIGNAL Quantity connected to the second analog input GROUP SIGNAL Quantity connected to the third analog input...
Page 408
Section 15 1MRK 505 277-UUS C Basic IED functions Table 346: SMAI_20_1 Non group settings (advanced) Name Values (Range) Unit Step Default Description Negation Disabled Disabled Negation NegateN Negate3Ph Negate3Ph+N MinValFreqMeas 5 - 200 Limit for frequency calculation in % of VBase Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible.
Section 15 1MRK 505 277-UUS C Basic IED functions Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible. This means that the minimum level for current amplitude is based on VBase. For example, if VBase is 20000, the minimum amplitude for current is 20000 * 10% = 2000.
Page 410
Section 15 1MRK 505 277-UUS C Basic IED functions • It is not mandatory to connect all the inputs of SMAI function. However, it is very important that same set of three phase analog signals should be connected to one SMAI function.
Page 411
Section 15 1MRK 505 277-UUS C Basic IED functions based on the set system frequency. DFTReference set to DFTRefGrpX uses DFT reference from the selected group block, when own group selected adaptive DFT reference will be used based on the calculated signal frequency from own group. DFTReference set to External DFT Ref will use reference based on input signal DFTSPFC.
Page 412
Section 15 1MRK 505 277-UUS C Basic IED functions Task time group 1 Task time group 2 (5ms) (20ms) SMAI_20_1 SMAI_20_1 BLOCK SPFCOUT BLOCK SPFCOUT DFTSPFC AI3P DFTSPFC AI3P REVROT REVROT ^GRP1_A ^GRP1_A ^GRP1_B ^GRP1_B ^GRP1_C ^GRP1_C ^GRP1_N ^GRP1_N Task time group 1 (5ms) Task time group 2 (20ms) SMAI instance 3 phase group SMAI instance 3 phase group...
Section 15 1MRK 505 277-UUS C Basic IED functions For SMAI_20_1:2 to SMAI_20_12:2 DFTReference set to External DFT ref to use DFTSPFC input as reference. 15.10 Summation block 3 phase 3PHSUM 15.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
Section 15 1MRK 505 277-UUS C Basic IED functions Table 350: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 15.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.12.2 Functionality To safeguard the interests of our customers, both the IED and the tools that are accessing the IED are protected, by means of authorization handling. The authorization handling of the IED and the PCM600 is implemented at both access points to the IED: •...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.12.4.1 Authorization handling in the IED At delivery the default user is the SuperUser. No Log on is required to operate the IED until a user has been created with the IED User Management.. Once a user is created and written to the IED, that user can perform a Log on, using the password assigned in the tool.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.13.2 Functionality Authority status (ATHSTAT) function is an indication function block for user log-on activity. 15.13.3 Function block ATHSTAT USRBLKED LOGGEDON IEC09000235_en_1.vsd IEC09000235 V1 EN Figure 171: ATHSTAT function block 15.13.4 Signals Table 355: ATHSTAT Output signals...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.14 Denial of service 15.14.1 Functionality The Denial of service functions (DOSLAN1 and DOSFRNT) are designed to limit overload on the IED produced by heavy Ethernet network traffic. The communication facilities must not be allowed to compromise the primary functionality of the device. All inbound network traffic will be quota controlled so that too heavy network loads can be controlled.
Section 15 1MRK 505 277-UUS C Basic IED functions 15.14.2.4 Settings The function does not have any parameters available in the local HMI or PCM600. 15.14.2.5 Monitored data Table 357: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state...
Section 15 1MRK 505 277-UUS C Basic IED functions 15.14.3.2 Function block DOSLAN1 LINKUP WARNING ALARM IEC09000134-1-en.vsd IEC09000134 V1 EN Figure 173: DOSLAN1 function block 15.14.3.3 Signals Table 358: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state...
Section 15 1MRK 505 277-UUS C Basic IED functions Name Type Values (Range) Unit Description NonIPPackRecNorm INTEGER Number of non IP packets received in normal mode NonIPPackRecPoll INTEGER Number of non IP packets received in polled mode NonIPPackDisc INTEGER Number of non IP packets discarded 15.14.4 Operation principle...
Section 16 1MRK 505 277-UUS C IED physical connections Section 16 IED physical connections 16.1 Protective ground connections The IED shall be grounded with a 6 Gauge flat copper cable. The ground lead should be as short as possible, less than 59.06 inches (1500 mm).
Section 16 1MRK 505 277-UUS C IED physical connections Table 362: Auxiliary voltage supply of 48-125 V DC Case Terminal Description 3U full 19” X420-1 - Input X420-2 + Input 16.2.3 Binary inputs The binary inputs can be used, for example, to generate a blocking signal, to unlatch output contacts, to trigger the digital fault recorder or for remote control of IED settings.
Page 426
Section 16 1MRK 505 277-UUS C IED physical connections Table 364: Binary inputs X324, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X324-1 - for input 1 BIO_3 X324-2 Binary input 1 + BIO_3 X324-3 X324-4 Common - for inputs 2-3 X324-5 Binary input 2 +...
Page 427
Section 16 1MRK 505 277-UUS C IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X329-12 Common - for inputs 6-7 X329-13 Binary input 6 + BIO_4 X329-14 Binary input 7 + BIO_4 X329-15 X329-16 Common - for inputs 8-9 X329-17 Binary input 8 + BIO_4...
Section 16 1MRK 505 277-UUS C IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X336-16 Signal output 6, normally closed BIO_6 BO9_SO X336-17 Signal output 6, normally open X336-18 Signal output 6, common 16.3.3 The IRF contact functions as a change-over output contact for the self-supervision system of the IED.
Section 16 1MRK 505 277-UUS C IED physical connections PC has to be configured in a way that it obtains the IP address automatically if the DHCPServer is enabled in LHMI. There is a DHCP server inside IED for the front interface only.
Section 17 1MRK 505 277-UUS C Technical data 17.3 Energizing inputs Table 383: Energizing inputs Description Value Rated frequency 50/60 Hz Operating range Rated frequency ± 5 Hz Current inputs Rated current, I 0.1/0.5 A 1/5 A Thermal withstand capability: •...
Section 17 1MRK 505 277-UUS C Technical data 17.5 Signal outputs Table 385: Signal output and IRF output Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 10 A Make and carry 0.5 s 30 A Breaking capacity when the control-circuit time ≤0.5 A/≤0.1 A/≤0.04 A...
Section 17 1MRK 505 277-UUS C Technical data 17.7 Data communication interfaces Table 388: Ethernet interfaces Ethernet interface Protocol Cable Data transfer rate 100BASE-TX CAT 6 S/FTP or better 100 MBits/s 100BASE-FX TCP/IP protocol Fibre-optic cable with 100 MBits/s LC connector Table 389: Fibre-optic communication link Wave length...
Section 17 1MRK 505 277-UUS C Technical data Table 392: EIA-485 interface Type Value Conditions Minimum differential 1.5 V — driver output voltage Maximum output current 60 mA — Minimum differential 0.2 V — receiver input voltage Supported bit rates 300, 600, 1200, 2400, —...
Section 17 1MRK 505 277-UUS C Technical data 17.9 Environmental conditions and tests Table 397: Environmental conditions Description Value Operating temperature range -25...+55ºC (continuous) Short-time service temperature range -40...+70ºC (<16h) Note: Degradation in MTBF and HMI performance outside the temperature range of -25...+55ºC Relative humidity <93%, non-condensing Atmospheric pressure...
Section 18 1MRK 505 277-UUS C IED and functionality tests Section 18 IED and functionality tests 18.1 Electromagnetic compatibility tests Table 399: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2002...
Page 462
Section 18 1MRK 505 277-UUS C IED and functionality tests Description Type test value Reference • 1000 A/m • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Power frequency immunity test IEC 60255-22-7, class A IEC 61000-4-16 •...
Section 18 1MRK 505 277-UUS C IED and functionality tests 18.2 Insulation tests Table 400: Insulation tests Description Type test value Reference Dielectric tests: IEC 60255-5 ANSI C37.90-2005 • Test voltage 2 kV, 50 Hz, 1 min 1 kV, 50 Hz, 1 min, communication Impulse voltage test: IEC 60255-5...
Section 19 1MRK 505 277-UUS C Time inverse characteristics Section 19 Time inverse characteristics 19.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used. The simplest way to do this is to use definite time delay.
Page 466
Section 19 1MRK 505 277-UUS C Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 177: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections. To assure selectivity between protections there must be a time margin between the operation time of the protections.
Page 467
Section 19 1MRK 505 277-UUS C Time inverse characteristics Feeder Time axis en05000132_ansi.vsd ANSI05000132 V1 EN Figure 178: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
Section 19 1MRK 505 277-UUS C Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, picks up and resets there is a risk of unselective trip from other protections in the system. •...
Page 469
Section 19 1MRK 505 277-UUS C Time inverse characteristics For inverse time characteristics a time will be initiated when the current reaches the set pickup level. From the general expression of the characteristic the following can be seen: æ ö æ...
Page 470
Section 19 1MRK 505 277-UUS C Time inverse characteristics For the IEC curves there is also a setting of the minimum time-lag of operation, see figure 179. Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 179: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current pickup value.
Section 19 1MRK 505 277-UUS C Time inverse characteristics æ ö ç ÷ ç ÷ Pickupn ç ÷ ç ÷ × 0.339 0.235 è ø (Equation 77) EQUATION1647 V1 EN where: Pickupn is the set pickup current for step n is set time multiplier for step n is the measured current The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection...
Page 472
Section 19 1MRK 505 277-UUS C Time inverse characteristics Table 404: ANSI Inverse time characteristics Function Range or value Accuracy Operating characteristic: td = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1651 V1 EN I = I measured ANSI Extremely Inverse...
Page 473
Section 19 1MRK 505 277-UUS C Time inverse characteristics Table 406: RI and RD type inverse time characteristics Function Range or value Accuracy RI type inverse characteristic td = (0.05-999) in steps of 0.01 × 0.236 0.339 EQUATION1656 V1 EN I = I measured RD type logarithmic inverse characteristic...
Page 474
Section 19 1MRK 505 277-UUS C Time inverse characteristics Table 408: Inverse time characteristics for undervoltage protection Function Range or value Accuracy Type A curve: td = (0.05-1.10) in steps ±5% +60 ms of 0.01 æ ö VPickup V ç ÷...
Page 475
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070750 V2 EN Figure 180: ANSI Extremely inverse time characteristics Technical Manual...
Page 476
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070751 V2 EN Figure 181: ANSI Very inverse time characteristics Technical Manual...
Page 477
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070752 V2 EN Figure 182: ANSI Normal inverse time characteristics Technical Manual...
Page 478
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070753 V2 EN Figure 183: ANSI Moderately inverse time characteristics Technical Manual...
Page 479
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070817 V2 EN Figure 184: ANSI Long time extremely inverse time characteristics Technical Manual...
Page 480
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070818 V2 EN Figure 185: ANSI Long time very inverse time characteristics Technical Manual...
Page 481
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070819 V2 EN Figure 186: ANSI Long time inverse time characteristics Technical Manual...
Page 482
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070820 V2 EN Figure 187: IEC Normal inverse time characteristics Technical Manual...
Page 483
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070821 V2 EN Figure 188: IEC Very inverse time characteristics Technical Manual...
Page 484
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070822 V2 EN Figure 189: IEC Inverse time characteristics Technical Manual...
Page 485
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070823 V2 EN Figure 190: IEC Extremely inverse time characteristics Technical Manual...
Page 486
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070824 V2 EN Figure 191: IEC Short time inverse time characteristics Technical Manual...
Page 487
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070825 V2 EN Figure 192: IEC Long time inverse time characteristics Technical Manual...
Page 488
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070826 V2 EN Figure 193: RI-type inverse time characteristics Technical Manual...
Page 489
Section 19 1MRK 505 277-UUS C Time inverse characteristics A070827 V2 EN Figure 194: RD-type inverse time characteristics Technical Manual...
Page 490
Section 19 1MRK 505 277-UUS C Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 195: Inverse curve A characteristic of overvoltage protection Technical Manual...
Page 491
Section 19 1MRK 505 277-UUS C Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 196: Inverse curve B characteristic of overvoltage protection Technical Manual...
Page 492
Section 19 1MRK 505 277-UUS C Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 197: Inverse curve C characteristic of overvoltage protection Technical Manual...
Page 493
Section 19 1MRK 505 277-UUS C Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 198: Inverse curve A characteristic of undervoltage protection Technical Manual...
Page 494
Section 19 1MRK 505 277-UUS C Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 199: Inverse curve B characteristic of undervoltage protection Technical Manual...
Section 20 1MRK 505 277-UUS C Glossary Section 20 Glossary Alternating current Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection American Wire Gauge standard Binary input Binary outputs status...
Page 496
Section 20 1MRK 505 277-UUS C Glossary COMTRADE Standard Common Format for Transient Data Exchange format for Disturbance recorder according to IEEE/ANSI C37.111, 1999 / IEC60255-24 Contra-directional Way of transmitting G.703 over a balanced line. Involves four twisted pairs, two of which are used for transmitting data in both directions and two for transmitting clock signals Central processor unit Carrier receive...
Page 497
Section 20 1MRK 505 277-UUS C Glossary Electromagnetic compatibility (Electric Motive Force) Electromagnetic interference EnFP End fault protection Enhanced performance architecture Electrostatic discharge Flow control bit; Frame count bit FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer FOX 6Plus...
Page 498
Section 20 1MRK 505 277-UUS C Glossary IEC 61850 Substation automation communication standard IEC 61850–8–1 Communication protocol standard IEEE Institute of Electrical and Electronics Engineers IEEE 802.12 A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable IEEE P1386.1 PCI Mezzanine Card (PMC) standard for local bus modules.
Page 499
Section 20 1MRK 505 277-UUS C Glossary Local area network LIB 520 High-voltage software module Liquid crystal display Local detection device Light-emitting diode Miniature circuit breaker Mezzanine carrier module Multifunction vehicle bus. Standardized serial bus originally developed for use in trains. National Control Centre OCO cycle Open-close-open cycle...
Page 500
Section 20 1MRK 505 277-UUS C Glossary Relay characteristic angle RFPP Resistance for phase-to-phase faults Resistance for phase-to-ground faults RISC Reduced instruction set computer RMS value Root mean square value RS422 A balanced serial interface for the transmission of digital data in point-to-point connections RS485 Serial link according to EIA standard RS485...
Page 501
Section 20 1MRK 505 277-UUS C Glossary TCP/IP Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix. TCP/IP was developed by DARPA for Internet working and encompasses both network layer and transport layer protocols.
Page 502
Section 20 1MRK 505 277-UUS C Glossary Three times the zero sequence voltage. Often referred to as the residual voltage or the neutral point voltage Technical Manual...
Page 504
ABB Inc. 3450 Harvester Road Burlington, ON L7N 3W5, Canada Phone Toll Free: 1-800-HELP-365, menu option #8 ABB Mexico S.A. de C.V. Paseo de las Americas No. 31 Lomas Verdes 3a secc. 53125, Naucalpan, Estado De Mexico, MEXICO Phone (+1) 440-585-7804, menu...