hit counter script
ABB REC650 ANSI Technical Manual

ABB REC650 ANSI Technical Manual

Relion 650 series bay control
Hide thumbs Also See for REC650 ANSI:
Table of Contents

Advertisement

®
Relion
650 series
Bay control REC650 ANSI
Technical manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB REC650 ANSI

  • Page 1 ® Relion 650 series Bay control REC650 ANSI Technical manual...
  • Page 3 Document ID: 1MRK 511 287-UUS Issued: October 2016 Revision: A Product version: 1.3 © Copyright 2013 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction................31 This manual.................... 31 Intended audience.................. 31 Product documentation................32 Product documentation set..............32 Document revision history..............33 Related documents................33 Symbols and conventions...............34 Symbols.....................34 Document conventions..............35 Section 2 Available functions.............. 37 Control and monitoring functions............37 Back-up protection functions..............
  • Page 8 Table of contents Function block................... 62 Signals....................62 Basic part for LED indication module............63 Identification..................63 Function block................... 63 Signals....................63 Settings....................64 LCD part for HMI function keys control module........65 Identification..................65 Function block................... 65 Signals....................65 Settings....................65 Operation principle..................66 Local HMI...................66 Display..................66 LEDs.....................69 Keypad..................
  • Page 9 Table of contents Function block................... 86 Signals....................86 Settings....................87 Monitored data...................89 Operation principle................89 Second harmonic blocking element...........94 Technical data................... 95 Instantaneous residual overcurrent protection EFPIOC (50N)....95 Identification ..................95 Functionality..................96 Function block................... 96 Signals....................96 Settings....................96 Monitored data...................97 Operation principle................97 Technical data...................
  • Page 10 Table of contents Signals.....................117 Settings....................117 Monitored data.................119 Operation principle ................. 119 Function inputs................119 Directional residual current protection measuring 3I ·cos φ..120 Directional residual power protection measuring 3I · 3V · cos φ123 Directional residual current protection measuring 3I and φ..124 Directional functions..............
  • Page 11 Table of contents Technical data................. 144 Pole discrepancy protection CCRPLD (52PD)........145 Identification ................... 145 Functionality..................145 Function block................. 145 Signals.....................146 Settings....................146 Monitored data.................147 Operation principle................147 Pole discrepancy signaling from circuit breaker......148 Unsymmetrical current detection..........149 Technical data................. 149 Broken conductor check BRCPTOC (46)..........
  • Page 12 Table of contents Identification..................162 Functionality..................162 Function block................. 163 Signals.....................163 Settings....................164 Monitored data.................165 Operation principle................165 Technical data................. 165 Section 7 Voltage protection............. 167 Two step undervoltage protection UV2PTUV (27)........167 Identification..................167 Functionality..................167 Function block................. 167 Signals.....................168 Settings....................168 Monitored data.................169 Operation principle................
  • Page 13 Table of contents Signals.....................182 Settings....................183 Monitored data.................183 Operation principle................183 Measurement principle............... 184 Time delay.................. 184 Blocking..................184 Design..................184 Technical data................. 186 Loss of voltage check LOVPTUV (27)..........186 Identification..................186 Functionality..................186 Function block................. 187 Signals.....................187 Settings....................187 Operation principle................188 Technical data.................
  • Page 14 Table of contents Measurement principle............... 197 Time delay.................. 198 Blocking..................198 Design..................198 Technical data................. 199 Rate-of-change frequency protection SAPFRC (81)......199 Identification..................199 Functionality..................199 Function block................. 200 Signals.....................200 Settings....................200 Operation principle................201 Measurement principle............... 201 Time delay.................. 201 Design..................
  • Page 15 Table of contents Identification..................218 Functionality..................218 Function block................. 219 Signals.....................219 Settings....................219 Operation principle................219 Technical data................. 220 Section 10 Control................221 Synchronism check, energizing check, and synchronizing SESRSYN (25)..................221 Identification..................221 Functionality..................221 Function block................. 222 Signals.....................222 Settings....................224 Monitored data.................226 Operation principle................
  • Page 16 Table of contents Apparatus control..................248 Functionality..................248 Switch controller SCSWI..............249 Identification ................249 Functionality................249 Function block................249 Signals..................250 Settings..................251 Circuit breaker SXCBR..............251 Identification ................251 Functionality................251 Function block................252 Signals..................252 Settings..................253 Circuit switch SXSWI............... 253 Identification ................253 Functionality................
  • Page 17 Table of contents Function block................261 Signals..................261 Settings..................262 Operation principle................262 Switch controller SCSWI............262 Circuit breaker SXCBR...............266 Circuit switch SXSWI ..............271 Bay control QCBAY..............275 Local remote/Local remote control LOCREM/LOCREMCTRL... 277 Interlocking................... 278 Functionality..................278 Logical node for interlocking SCILO (3)...........278 Identification................
  • Page 18 Table of contents Identification................290 Functionality................290 Function block................292 Logic diagram................293 Signals..................295 Settings..................298 Interlocking for breaker-and-a-half diameter BH (3)......298 Identification................298 Functionality................298 Function block................300 Logic diagrams................303 Signals..................308 Settings..................312 Interlocking for double CB bay DB (3)..........312 Identification................
  • Page 19 Table of contents Settings..................342 Operation principle................342 Logic rotating switch for function selection and LHMI presentation SLGGIO....................345 Identification..................345 Functionality..................346 Function block................. 346 Signals.....................346 Settings....................348 Monitored data.................348 Operation principle................348 Selector mini switch VSGGIO...............349 Identification..................349 Functionality..................349 Function block.................
  • Page 20 Table of contents Functionality..................358 Function block................. 358 Signals.....................359 Settings....................359 IED commands for IEC 60870-5-103 I103IEDCMD......359 Functionality..................359 Function block................. 359 Signals.....................360 Settings....................360 Function commands user defined for IEC 60870-5-103 I103USRCMD360 Functionality..................360 Function block................. 361 Signals.....................361 Settings....................361 Function commands generic for IEC 60870-5-103 I103GENCMD..362 Functionality..................
  • Page 21 Table of contents Settings....................370 Operation principle................370 Configurable logic blocks..............372 Standard configurable logic blocks..........372 Functionality................372 OR function block............... 374 Inverter function block INVERTER..........375 PULSETIMER function block .............376 Controllable gate function block GATE........377 Exclusive OR function block XOR..........378 Loop delay function block LOOPDELAY........
  • Page 22 Table of contents Function block................. 402 Signals.....................402 Settings....................403 Monitored data.................403 Operation principle................403 Boolean 16 to integer conversion with logic node representation B16IFCVI....................404 Identification..................404 Functionality..................404 Function block................. 405 Signals.....................405 Settings....................406 Monitored data.................406 Operation principle................406 Integer to boolean 16 conversion IB16A..........407 Identification..................
  • Page 23 Table of contents Section 12 Monitoring................419 Measurements..................419 Functionality..................419 Measurements CVMMXN..............420 Identification ................420 Function block................421 Signals..................421 Settings..................422 Monitored data................425 Phase current measurement CMMXU..........426 Identification ................426 Function block................426 Signals..................426 Settings..................427 Monitored data................428 Phase-phase voltage measurement VMMXU......... 428 Identification ................
  • Page 24 Table of contents Operation principle................439 Measurement supervision............439 Measurements CVMMXN............443 Phase current measurement CMMXU........448 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU..............449 Voltage and current sequence measurements VMSQI, CMSQI 449 Technical data................. 449 Event Counter CNTGGIO..............450 Identification..................450 Functionality..................
  • Page 25 Table of contents Signals..................463 Settings..................464 Analog input signals A4RADR............468 Identification................468 Function block................468 Signals..................469 Settings..................469 Binary input signals BxRBDR............473 Identification................473 Function block................473 Signals..................474 Settings..................474 Operation principle................480 Disturbance information..............482 Indications ................. 482 Event recorder ................482 Sequential of events ..............
  • Page 26 Table of contents Sequential of events................492 Functionality..................492 Function block................. 492 Signals.....................492 Input signals................492 Operation principle................492 Technical data................. 493 Trip value recorder................493 Functionality..................493 Function block................. 493 Signals.....................494 Input signals................494 Operation principle................494 Technical data................. 494 Disturbance recorder................
  • Page 27 Table of contents Function block................. 502 Signals.....................502 Settings....................503 Monitored data.................504 Operation principle................504 Measured value expander block MVEXP..........504 Identification..................504 Functionality..................504 Function block................. 505 Signals.....................505 Settings....................505 Operation principle................505 Fault locator LMBRFLO................ 506 Identification..................506 Functionality..................506 Function block................. 507 Signals.....................507 Settings....................508 Monitored data.................509...
  • Page 28 Table of contents Operation principle................521 Technical data................. 521 Insulation liquid monitoring function SSIML (71)........522 Identification..................522 Functionality..................522 Function block................. 522 Signals.....................522 Settings....................523 Operation principle................524 Technical data................. 524 Circuit breaker condition monitoring SSCBR........524 Identification..................524 Functionality..................525 Function block.................
  • Page 29 Table of contents Function block................. 543 Signals.....................543 Settings....................543 Function status ground-fault for IEC 60870-5-103 I103EF....543 Functionality..................543 Function block................. 544 Signals.....................544 Settings....................544 Function status fault protection for IEC 60870-5-103 I103FLTPROT...544 Functionality..................544 Function block................. 545 Signals.....................545 Settings....................546 IED status for IEC 60870-5-103 I103IED..........547 Functionality..................
  • Page 30 Table of contents Identification..................555 Functionality..................555 Function block................. 555 Signals.....................556 Settings....................557 Monitored data.................558 Operation principle................558 Technical data................. 559 Section 14 Station communication............561 DNP3 protocol..................561 IEC 61850-8-1 communication protocol ..........561 Identification..................561 Functionality..................561 Communication interfaces and protocols........562 Settings....................563 Technical data.................
  • Page 31 Table of contents Signals.....................572 Settings....................572 Operation principle ................. 572 GOOSE function block to receive a measurand value GOOSEMVRCV573 Identification..................573 Functionality..................573 Function block................. 573 Signals.....................573 Settings....................574 Operation principle ................. 574 GOOSE function block to receive a single point value GOOSESPRCV574 Identification..................
  • Page 32 Table of contents Function block................583 Signals..................584 Settings..................584 Internal event list SELFSUPEVLST..........584 Identification................584 Settings..................584 Operation principle................584 Internal signals................587 Run-time model................588 Technical data................. 589 Time synchronization................590 Functionality..................590 Time synchronization TIMESYNCHGEN.........590 Identification................590 Settings..................590 Time synchronization via SNTP............591 Identification................
  • Page 33 Table of contents Parameter setting groups ACTVGRP..........599 Identification................599 Function block................599 Signals..................600 Settings..................600 Operation principle................600 Test mode functionality TESTMODE............601 Identification..................601 Functionality..................602 Function block................. 602 Signals.....................602 Settings....................603 Operation principle................603 Change lock function CHNGLCK ............604 Identification..................604 Functionality..................
  • Page 34 Table of contents Identification..................617 Functionality..................617 Function block................. 617 Signals.....................617 Settings....................618 Operation principle................618 Global base values GBASVAL............. 618 Identification..................619 Functionality..................619 Settings....................619 Authority check ATHCHCK..............619 Identification..................619 Functionality..................620 Settings....................620 Operation principle................621 Authorization handling in the IED..........621 Authority management AUTHMAN............622 Identification..................
  • Page 35 Table of contents Identification................627 Function block................627 Signals..................628 Settings..................628 Monitored data................628 Operation principle................628 Section 16 IED physical connections..........631 Protective ground connections............. 631 Inputs....................632 Measuring inputs................632 Auxiliary supply voltage input............633 Binary inputs..................633 Outputs....................637 Outputs for tripping, controlling and signalling.........637 Outputs for signalling...............639 IRF....................641 Communication connections..............642...
  • Page 36 Table of contents Mechanical tests................... 653 Product safety..................654 EMC compliance...................654 Section 19 Time inverse characteristics..........655 Application.................... 655 Operation principle................658 Mode of operation................658 Inverse time characteristics..............661 Section 20 Glossary................685 Technical manual...
  • Page 37: Section 1 Introduction

    Section 1 1MRK 511 287-UUS A Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 38: Product Documentation

    Section 1 1MRK 511 287-UUS A Introduction Product documentation 1.3.1 Product documentation set Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual IEC07000220-3-en.vsd IEC07000220 V3 EN Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
  • Page 39: Document Revision History

    Section 1 1MRK 511 287-UUS A Introduction during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service.
  • Page 40: Symbols And Conventions

    Section 1 1MRK 511 287-UUS A Introduction 650 series manuals Identity number Communication protocol manual, DNP 3.0 1MRK 511 280-UUS Communication protocol manual, IEC 61850–8–1 1MRK 511 281-UUS Communication protocol manual, IEC 60870-5-103 1MRK 511 282-UUS Cyber Security deployment guidelines 1MRK 511 285-UUS Point list manual, DNP 3.0 1MRK 511 283-UUS...
  • Page 41: Document Conventions

    Section 1 1MRK 511 287-UUS A Introduction The tip icon indicates advice on, for example, how to design your project or how to use a certain function. Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death.
  • Page 43: Section 2 Available Functions

    Section 2 1MRK 511 287-UUS A Available functions Section 2 Available functions Control and monitoring functions IEC 61850 or Function ANSI Function description name Control SESRSYN Synchrocheck, energizing check, and 0–1 synchronizing SMBRREC Autorecloser for 3–phase operation 0–1 SLGGIO Logic Rotating Switch for function selection and LHMI presentation VSGGIO Selector mini switch...
  • Page 44 Section 2 1MRK 511 287-UUS A Available functions IEC 61850 or Function ANSI Function description name BH_CONN Interlocking for 1 1/2 breaker diameter BH_LINE_A Interlocking for 1 1/2 breaker diameter BH_LINE_B Interlocking for 1 1/2 breaker diameter DB_BUS_A Interlocking for double CB bay DB_BUS_B Interlocking for double CB bay DB_LINE...
  • Page 45 Section 2 1MRK 511 287-UUS A Available functions IEC 61850 or Function ANSI Function description name SRMEMORY Configurable logic blocks RSMEMORY Configurable logic blocks Configurable logic blocks Q/T 0–1 ANDQT Configurable logic blocks Q/T 0–120 ORQT Configurable logic blocks Q/T 0–120 INVERTERQT Configurable logic blocks Q/T...
  • Page 46 Section 2 1MRK 511 287-UUS A Available functions IEC 61850 or Function ANSI Function description name AM_P_P4 Function block for service values presentation of primary analog inputs 600AIM TM_S_P2 Function block for service values presentation of secondary analog inputs 600TRM AM_S_P4 Function block for service values presentation of secondary analog inputs 600AIM...
  • Page 47: Back-Up Protection Functions

    Section 2 1MRK 511 287-UUS A Available functions Back-up protection functions IEC 61850 or ANSI Function description Function name Current protection PHPIOC Instantaneous phase overcurrent protection, 3–phase 0–1 output OC4PTOC 51/67 Four step phase overcurrent protection, 3-phase 0–1 output EFPIOC Instantaneous residual overcurrent protection 0–1 EF4PTOC...
  • Page 48: Station Communication

    Section 2 1MRK 511 287-UUS A Available functions Station communication IEC 61850 or Function ANSI Function description name Station communication IEC61850-8-1 IEC 61850 communication protocol DNPGEN DNP3.0 communication general protocol RS485DNP DNP3.0 for RS-485 communication protocol CH1TCP DNP3.0 for TCP/IP communication protocol CH2TCP DNP3.0 for TCP/IP communication protocol CH3TCP...
  • Page 49: Basic Ied Functions

    Section 2 1MRK 511 287-UUS A Available functions IEC 61850 or Function ANSI Function description name CONFPROT IED Configuration Protocol ACTIVLOG Activity logging parameters SECALARM Component for mapping security events on protocols such as DNP3 and IEC103 AGSAL Generic security application component GOOSEDPRCV GOOSE function block to receive a double point value...
  • Page 50 Section 2 1MRK 511 287-UUS A Available functions IEC 61850/Function Function description block name GBASVAL Global base values for settings ATHSTAT Authority status ATHCHCK Authority check AUTHMAN Authority management FTPACCS FTPS access with password DOSFRNT Denial of service, frame rate control for front port DOSLAN1 Denial of service, frame rate control for LAN1A and LAN1B ports DOSSCKT...
  • Page 51: Section 3 Analog Inputs

    Section 3 1MRK 511 287-UUS A Analog inputs Section 3 Analog inputs Introduction Analog input channels in the IED must be set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
  • Page 52: Presumptions For Technical Data

    Section 3 1MRK 511 287-UUS A Analog inputs • Forward means the direction is into the object. • Reverse means the direction is out from the object. Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse...
  • Page 53: Settings

    Section 3 1MRK 511 287-UUS A Analog inputs have corresponding primary quantity, the 1:1 ratio shall be set for the used analogue inputs on the IED, For example, HZPDIF. • Parameter IBase used by the tested function is set equal to the rated CT primary current.
  • Page 54 Section 3 1MRK 511 287-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim2 1 - 99999 1000 Rated CT primary current CTStarPoint3 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000...
  • Page 55 Section 3 1MRK 511 287-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 0.1 - 10.0...
  • Page 56 Section 3 1MRK 511 287-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 0.1 - 10.0...
  • Page 57 Section 3 1MRK 511 287-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim4 1 - 99999 1000 Rated CT primary current VTsec5 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim5 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec6 0.001 - 999.999...
  • Page 58 Section 3 1MRK 511 287-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec6 0.1 - 10.0 Rated CT secondary current CTprim6 1 - 99999 1000 Rated CT primary current VTsec7 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim7 0.001 - 9999.999 0.001...
  • Page 59 Section 3 1MRK 511 287-UUS A Analog inputs Name Values (Range) Unit Step Default Description VTprim8 0.001 - 9999.999 0.001 Rated VT primary voltage VTsec9 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim9 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec10 0.001 - 999.999...
  • Page 61: Section 4 Binary Input And Output Modules

    Section 4 1MRK 511 287-UUS A Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 62: Settings

    Section 4 1MRK 511 287-UUS A Binary input and output modules Each binary input has an oscillation count parameter OscillationCountx and an oscillation time parameter OscillationTimex, where x is the number of the binary input of the module in question. 4.1.3 Settings 4.1.3.1...
  • Page 63: Setting Parameters For Communication Module

    Section 4 1MRK 511 287-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description Threshold6 6 - 900 Threshold in percentage of station battery voltage for input 6 DebounceTime6 0.000 - 0.100 0.001 0.005 Debounce time for input 6 OscillationCount6 0 - 255 Oscillation count for input 6...
  • Page 64 Section 4 1MRK 511 287-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime2 0.000 - 600.000 0.001 0.000 Oscillation time for input 2 Threshold3 6 - 900 Threshold in percentage of station battery voltage for input 3 DebounceTime3 0.000 - 0.100 0.001...
  • Page 65 Section 4 1MRK 511 287-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationCount10 0 - 255 Oscillation count for input 10 OscillationTime10 0.000 - 600.000 0.001 0.000 Oscillation time for input 10 Threshold11 6 - 900 Threshold in percentage of station battery voltage for input 11 DebounceTime11...
  • Page 67: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 12: SCREEN Non group settings (basic) Name Values (Range)
  • Page 68: Function Block

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI 5.2.2 Function block LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN Figure 3: LHMICTRL function block 5.2.3 Signals Table 13: LHMICTRL Input signals Name Type Default Description CLRLEDS BOOLEAN Input to reset the LCD-HMI LEDs...
  • Page 69: Basic Part For Led Indication Module

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Basic part for LED indication module 5.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Basic part for LED indication module LEDGEN Basic part for LED indication module GRP1_LED1 - GRP1_LED15 GRP2_LED1 -...
  • Page 70: Settings

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Table 16: GRP1_LED1 Input signals Name Type Default Description HM1L01R BOOLEAN Red indication of LED1, local HMI alarm group 1 HM1L01Y BOOLEAN Yellow indication of LED1, local HMI alarm group 1 HM1L01G BOOLEAN Green indication of LED1, local HMI alarm group 1...
  • Page 71: Lcd Part For Hmi Function Keys Control Module

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI LCD part for HMI function keys control module 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number LCD part for HMI Function Keys Control FNKEYMD1 - module FNKEYMD5 5.4.2...
  • Page 72: Operation Principle

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Table 23: FNKEYTY1 Non group settings (basic) Name Values (Range) Unit Step Default Description Type Disabled Disabled Function key type Menu shortcut Control MenuShortcut Menu shortcut for function key Operation principle 5.5.1 Local HMI ANSI12000175 V1 EN...
  • Page 73 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI IEC13000063-1-en.vsd IEC13000063 V1 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 74 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI IEC13000045-1-en.vsd IEC13000045 V1 EN Figure 9: Truncated path The number before the function instance, for example ETHFRNT:1, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
  • Page 75: Leds

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
  • Page 76 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode. The keypad also contains programmable push-buttons that can be configured either as menu shortcut or control buttons.
  • Page 77: Functionality

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI 5.5.2 5.5.2.1 Functionality The function blocks LEDGEN and GRP1_LEDx, GRP2_LEDx and GRP3_LEDx (x=1-15) controls and supplies information about the status of the indication LEDs. The input and output signals of the function blocks are configured with PCM600. The input signal for each LED is selected individually using SMT or ACT.
  • Page 78 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI and a restart at a new disturbance. A disturbance is defined to end a settable time after the reset of the activated input signals or when the maximum time limit has elapsed. Acknowledgment/reset •...
  • Page 79 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI In the sequence diagrams the LEDs have the following characteristics: = No indication = Steady light = Flash = Green = Red = Yellow IEC09000311.vsd IEC09000311 V1 EN Figure 13: Symbols used in the sequence diagrams Sequence 1 (Follow-S) This sequence follows all the time, with a steady light, the corresponding input signals.
  • Page 80 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Sequence 3 LatchedAck-F-S This sequence has a latched function and works in collecting mode. Every LED is independent of the other LEDs in its operation. At the activation of the input signal, the indication starts flashing.
  • Page 81 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according to Figure Activating...
  • Page 82 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI 3 and 4 is that indications that are still activated will not be affected by the reset that is, immediately after the positive edge of the reset has been executed a new reading and storing of active signals is performed.
  • Page 83 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI LEDs set for sequence 6 are completely independent in its operation of LEDs set for other sequences. Timing diagram for sequence 6 Figure 22 shows the timing diagram for two indications within one disturbance. Disturbance tRestart Activating...
  • Page 84 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Disturbance Disturbance tRestart tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000240_2_en.vsd IEC01000240 V2 EN Figure 23: Operating sequence 6 (LatchedReset-S), two different disturbances Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed.
  • Page 85 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000241_2_en.vsd IEC01000241 V2 EN Figure 24: Operating sequence 6 (LatchedReset-S), two indications within same disturbance but with reset of activating signal between Figure 25 shows the timing diagram for manual reset.
  • Page 86: Functionality

    Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left of...
  • Page 87 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI FNKEYMD1 - FNKEYMD5 function block also has a number of settings and parameters that control the behavior of the function block. These settings and parameters are normally set using the PST. Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED.
  • Page 88 Section 5 1MRK 511 287-UUS A Local Human-Machine-Interface LHMI Input value Output value pulse pulse IEC09000332_1_en.vsd IEC09000332 V1 EN Figure 28: Sequence diagram for setting PULSED Input function All inputs work the same way: When the LHMI is configured so that a certain function button is of type CONTROL, then the corresponding input on this function block becomes active, and will light the yellow function button LED when high.
  • Page 89: Functionality

    Section 6 1MRK 511 287-UUS A Current protection Section 6 Current protection Instantaneous phase overcurrent protection 3-phase output PHPIOC (50) 6.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Instantaneous phase overcurrent PHPIOC protection 3-phase output 3I>>...
  • Page 90: Settings

    Section 6 1MRK 511 287-UUS A Current protection Table 25: PHPIOC (50) Output signals Name Type Description TRIP BOOLEAN Common trip signal 6.1.5 Settings Table 26: PHPIOC (50) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled...
  • Page 91: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection 6.1.8 Technical data Table 29: PHPIOC (50) technical data Function Range or value Accuracy Operate current (5-2500)% of lBase ± 1.0% of I at I £ I ± 1.0% of I at I > I Reset ratio >...
  • Page 92: Function Block

    Section 6 1MRK 511 287-UUS A Current protection Second harmonic blocking level can be set for the function and can be used to block each step individually 6.2.3 Function block OC4PTOC (51_67) I3P* TRIP V3P* TRST1 BLOCK TRST2 BLK1 TRST3 BLK2 TRST4 BLK3...
  • Page 93: Settings

    Section 6 1MRK 511 287-UUS A Current protection Name Type Description BOOLEAN Trip signal from step 4 START BOOLEAN General pickup signal BOOLEAN Pick up signal from step 1 BOOLEAN Pick up signal from step 2 BOOLEAN Pickup signal step 3 BOOLEAN Pickup signal step 4 STL1...
  • Page 94 Section 6 1MRK 511 287-UUS A Current protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 0.000 Minimum operate time for inverse curves for step 1 DirMode2 Disabled Non-directional Directional mode of step 2 off / non-directional / Non-directional forward / reverse Forward...
  • Page 95: Operation Principle

    Section 6 1MRK 511 287-UUS A Current protection Table 33: OC4PTOC (51_67) Group settings (advanced) Name Values (Range) Unit Step Default Description HarmRestrain Disabled Disabled Enable block from harmonic restrain Enabled 2ndHarmStab 5 - 100 %IFund Pickup of second harm restraint in % of Fundamental HarmRestrain1 Disabled...
  • Page 96 Section 6 1MRK 511 287-UUS A Current protection • The direction element • The harmonic Restraint Blocking function • The four step over current function • The mode selection If VT inputs are not available or not connected, setting parameter DirModeSelx shall be left to default value, Non-directional.
  • Page 97 Section 6 1MRK 511 287-UUS A Current protection the type of the measurement used for all overcurrent stages. It is possible to select either discrete Fourier filter (DFT) or true RMS filter (RMS). If DFT option is selected then only the RMS value of the fundamental frequency components of each phase current is derived.
  • Page 98 Section 6 1MRK 511 287-UUS A Current protection Phase-ground short circuit: dir A (Equation 4) ANSIEQUATION1452 V1 EN ref B dir B (Equation 5) ANSIEQUATION1453 V1 EN ref C dir C (Equation 6) ANSIEQUATION1454 V1 EN Technical manual...
  • Page 99 Section 6 1MRK 511 287-UUS A Current protection ANSI09000636-1-en.vsd ANSI09000636 V1 EN Figure 32: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the pickup signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
  • Page 100: Second Harmonic Blocking Element

    Section 6 1MRK 511 287-UUS A Current protection Characteristx=DefTime 0-tx a>b Pickupx 0-txMin Inve rse Characteristx=Inve rse STAGE x_DIR_Int DirModeSelx=Disa bled DirModeSelx=Non-dire ctional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI12000008-3-en.vsd ANSI12000008-3-en.vsd ANSI12000008 V3 EN Figure 33: Simplified logic diagram for OC4PTOC 6.2.8 Second harmonic blocking element A harmonic restrain of the Four step overcurrent protection function OC4PTOC 51_67 can be chosen.
  • Page 101: Identification

    Section 6 1MRK 511 287-UUS A Current protection 6.2.9 Technical data Table 36: OC4PTOC (51/67) technical data Function Setting range Accuracy lBase Operate current (5-2500)% of ± 1.0% of I at I ≤ I ± 1.0% of I at I > I lBase Reset ratio >...
  • Page 102: Functionality

    Section 6 1MRK 511 287-UUS A Current protection 6.3.2 Functionality The Instantaneous residual overcurrent protection EFPIOC (50N) has a low transient overreach and short tripping times to allow the use for instantaneous ground-fault protection, with the reach limited to less than the typical eighty percent of the line at minimum source impedance.
  • Page 103: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection Table 40: EFPIOC (50N) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 6.3.6 Monitored data Table 41: EFPIOC (50N) Monitored data Name Type...
  • Page 104: Four Step Residual Overcurrent Protection, Zero, Negative Sequence Direction Ef4Ptoc (51N/67N)

    Section 6 1MRK 511 287-UUS A Current protection Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC (51N/67N) 6.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step residual overcurrent EF4PTOC 51N/67N protection, zero or negative sequence direction IEC11000263 V1 EN 6.4.2...
  • Page 105: Function Block

    Section 6 1MRK 511 287-UUS A Current protection EF4PTOC (51N/67N) can also be used to provide a system back-up for example, in the case of the primary protection being out of service due to communication or voltage transformer circuit failure. Directional operation can be combined together with corresponding communication logic in permissive or blocking teleprotection scheme.
  • Page 106: Settings

    Section 6 1MRK 511 287-UUS A Current protection Table 44: EF4PTOC Output signals Name Type Description TRIP BOOLEAN General trip signal BOOLEAN Trip signal from step 1 BOOLEAN Trip signal from step 2 BOOLEAN Trip signal from step 3 BOOLEAN Trip signal from step 4 START BOOLEAN...
  • Page 107 Section 6 1MRK 511 287-UUS A Current protection Name Values (Range) Unit Step Default Description DirMode1 Non-directional Directional mode of step 1 (off, non-directional, Non-directional forward, reverse) Forward Reverse Characterist1 ANSI Ext. inv. ANSI Def. Time Time delay curve type for step 1 ANSI Very inv.
  • Page 108 Section 6 1MRK 511 287-UUS A Current protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.800 Independent (definite) time delay of step 3 IMin3 1 - 10000 Minimum operate current for step 3 in % of IBase HarmRestrain3 Enable block of step 3 from harmonic restrain...
  • Page 109: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection 6.4.6 Monitored data Table 47: EF4PTOC Monitored data Name Type Values (Range) Unit Description STDIR INTEGER 3=Both Fault direction coded as 1=Forward integer 2=Reverse 0=No direction REAL Operating current level UPol REAL Polarizing voltage level IPol REAL...
  • Page 110: Internal Polarizing

    Section 6 1MRK 511 287-UUS A Current protection • parallel connection of current instrument transformers in all three phases (Holm-Green connection). • one single core balance, current instrument transformer (cable CT). • one single current instrument transformer located between power system WYE point and ground (that is, current transformer located in the neutral grounding of a WYE connected transformer winding).
  • Page 111 Section 6 1MRK 511 287-UUS A Current protection Voltage polarizing When voltage polarizing is selected the protection will use either the residual voltage 3V or the negative sequence voltage V as polarizing quantity V3P. The residual voltage can be: directly measured (when a dedicated VT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to EF4PTOC (51N/ 67N) function input V3P).
  • Page 112 Section 6 1MRK 511 287-UUS A Current protection The polarizing phasor is used together with the phasor of the operating directional current, in order to determine the direction to the ground fault (Forward/Reverse). In order to enable voltage polarizing the magnitude of polarizing voltage shall be bigger than a minimum level defined by setting parameter VpolMin.
  • Page 113: External Polarizing For Ground-Fault Function

    Section 6 1MRK 511 287-UUS A Current protection × × Ipol = (IA+alpha IB+alpha IC)/3 (Equation 12) ANSIEQUATION2406 V2 EN where: IA, IB and IC are fundamental frequency phasors of three individual phase currents. alpha phasor with an angle of 120 degrees. The polarizing current is pre-processed by a discrete fourier filter.
  • Page 114: Base Quantities Within The Protection

    Section 6 1MRK 511 287-UUS A Current protection Distance protection directional function. Negative sequence based overcurrent function. 6.4.7.4 Base quantities within the protection The base quantities are entered as global settings for all functions in the IED. Base current (IBase) shall be entered as rated phase current of the protected object in primary amperes. Base voltage (VBase) shall be entered as rated phase-to-phase voltage of the protected object in primary kV.
  • Page 115: Directional Supervision Element With Integrated Directional Comparison Function

    Section 6 1MRK 511 287-UUS A Current protection available. For the complete list of available inverse curves please refer to section "Inverse time characteristics". • Time delay related settings. By these parameter settings the properties like definite time delay, minimum operating time for inverse curves and reset time delay are defined.
  • Page 116 Section 6 1MRK 511 287-UUS A Current protection polMethod. The polarizing quantity will be selected by the function in one of the following three ways: When polMethod = Voltage, VPol will be used as polarizing quantity. When polMethod = Current, IPol will be used as polarizing quantity. WhenpolMethod = Dual, VPol + IPol ·...
  • Page 117 Section 6 1MRK 511 287-UUS A Current protection BLKTR Characteristx=DefTime 0-tx a>b Pickupx PU_STx 0-txMin BLKx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModeSelx=Disabled DirModeSelx=Non-directional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI11000281-1-en.vsd ANSI11000281-1-en.vsd ANSI11000281 V1 EN Figure 39: Operating characteristic for ground-fault directional element using the zero sequence components Technical manual...
  • Page 118 Section 6 1MRK 511 287-UUS A Current protection Operating area PUREV 0.6 * IDirPU Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for PUREV 40% of RCA +85 deg IDIR 65 deg pol = - -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
  • Page 119 Section 6 1MRK 511 287-UUS A Current protection PUFW=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than setting parameter IDirPU and directional supervision element detects fault in forward direction. PUREV=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than 60% of setting parameter IDirPU and directional supervision element detects fault in reverse direction.
  • Page 120: Second Harmonic Blocking Element

    Section 6 1MRK 511 287-UUS A Current protection 6.4.8 Second harmonic blocking element A harmonic restrain of the Four step residual overcurrent protection function EF4PTOC 51N_67N can be chosen. If the ratio of the 2nd harmonic component in relation to the fundamental frequency component in the residual current exceeds the pre-set level defined by parameter setting 2ndHarmStab.
  • Page 121: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection 6.4.9 Technical data Table 48: EF4PTOC (51N/67N) technical data Function Range or value Accuracy lBase Operate current (1-2500)% of ± 1.0% of I at I < I ± 1.0% of I at I > I Reset ratio >...
  • Page 122: Sensitive Directional Residual Overcurrent And Power Protection Sdepsde (67N)

    Section 6 1MRK 511 287-UUS A Current protection Sensitive directional residual overcurrent and power protection SDEPSDE (67N) 6.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Sensitive directional residual over SDEPSDE current and power protection 6.5.2 Functionality In isolated networks or in networks with high impedance grounding, the ground fault...
  • Page 123: Signals

    Section 6 1MRK 511 287-UUS A Current protection 6.5.4 Signals Table 49: SDEPSDE (67N) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKUN BOOLEAN...
  • Page 124 Section 6 1MRK 511 287-UUS A Current protection Name Values (Range) Unit Step Default Description RCADir -179 - 180 Relay characteristic angle RCA RCAComp -10.0 - 10.0 Relay characteristic angle compensation ROADir 0 - 90 Relay open angle ROA used as release in phase mode INCosPhi>...
  • Page 125: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.100 Time delay for non-directional residual overvoltage INRel> 0.25 - 200.00 0.01 1.00 Residual release current for all directional modes, in % of IBase UNRel>...
  • Page 126: Directional Residual Current Protection Measuring 3I

    Section 6 1MRK 511 287-UUS A Current protection 6.5.7.2 Directional residual current protection measuring 3I ·cos φ φ is defined as the angle between the residual current 3I and the reference voltage. Vref = jRCADir , that is -3V rotated by the set characteristic angle RCADir (φ=ang(3I ang(V ) ).
  • Page 127 Section 6 1MRK 511 287-UUS A Current protection RCA = -90°, ROA = 90° ) – ang(V = ang(3I en06000649_ansi.vsd ANSI06000649 V1 EN Figure 45: RCADir set to -90° For trip, both the residual current 3I ·cos φ and the release voltage 3V , must be larger than the set levels: INCosPhiPU and VNRelPU.
  • Page 128 Section 6 1MRK 511 287-UUS A Current protection Operate area RCA = 0° ANSI06000650-2- en06000650_ansi.vsd ANSI06000650 V2 EN Figure 46: Characteristic with ROADir restriction The function indicates forward/reverse direction to the fault. Reverse direction is defined as 3I ·cos (φ + 180°) ≥ the set value. It is also possible to tilt the characteristic to compensate for current transformer angle error with a setting RCAComp as shown in the figure 47: Technical manual...
  • Page 129 Section 6 1MRK 511 287-UUS A Current protection Operate area RCA = 0° Instrument transformer RCAcomp angle error Characteristic after angle compensation (to prot) (prim) en06000651_ansi.vsd ANSI06000651 V1 EN Figure 47: Explanation of RCAComp 6.5.7.3 Directional residual power protection measuring 3I ·...
  • Page 130 Section 6 1MRK 511 287-UUS A Current protection This sub-function has the possibility of choice between definite time delay and inverse time delay. The inverse time delay is defined as: TDSN cos ( reference ϕ ⋅ ⋅ ⋅ cos ( measured ϕ...
  • Page 131: Directional Functions

    Section 6 1MRK 511 287-UUS A Current protection The function indicate forward/reverse direction to the fault. Reverse direction is defined as φ is within the angle sector: RCADir + 180° ± ROADir This sub-function has definite time delay. 6.5.7.5 Directional functions For all the directional functions there are directional pickup signals PUFW: fault in the forward direction, and PUREV: Pickup in the reverse direction.
  • Page 132 Section 6 1MRK 511 287-UUS A Current protection When the function is activated binary output signal PUVN is activated. If the output signals are active after the set delay tVNNonDir TRIP and TRUN are activated. A simplified logical diagram of the total function is shown in figure 49. PUNDIN INNonDirPU 0 - t...
  • Page 133: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection 6.5.8 Technical data Table 54: SDEPSDE (67N) technical data Function Range or value Accuracy lBase Operate level for 3I ·cosj (0.25-200.00)% of ± 1.0% of I at I £ I directional residual ±...
  • Page 134: Thermal Overload Protection, One Time Constant Fahrenheit/Celsius Lfpttr/Lcpttr (26)

    Section 6 1MRK 511 287-UUS A Current protection Function Range or value Accuracy Relay open angle ROA (0-90) degrees ± 2.0 degrees Operate time, non-directional 60 ms typically at 0 to 2 x I 60 ms typically at 0 to 2 x 1 residual over current Reset time, non-directional 65 ms typically at 2 to 0 x I...
  • Page 135: Function Block

    Section 6 1MRK 511 287-UUS A Current protection A thermal overload will often not be detected by other protection functions and the introduction of the thermal overload protection can allow the protected circuit to operate closer to the thermal limits. The three-phase current measuring protection has an I t characteristic with settable time constant and a thermal memory.
  • Page 136: Signals

    Section 6 1MRK 511 287-UUS A Current protection 6.6.4 Signals Table 55: LFPTTR (26) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function AMBTEMP REAL Ambient temperature from external temperature sensor SENSFLT BOOLEAN Validity status of ambient temperature sensor...
  • Page 137: Settings

    Section 6 1MRK 511 287-UUS A Current protection Name Type Description TEMP REAL Calculated temperature of the device TEMPAMB REAL Ambient temperature used in the calculations TERMLOAD REAL Temperature relative to operate temperature 6.6.5 Settings Table 59: LFPTTR (26) Group settings (basic) Name Values (Range) Unit...
  • Page 138: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection Name Values (Range) Unit Step Default Description AlarmTemp 0 - 200 Deg C Temperature level for pickup (alarm) TripTemp 0 - 300 Deg C Temperature level for trip ReclTemp 0 - 300 Deg C Temperature for reset of lockout after trip AmbiSens...
  • Page 139: Operation Principle

    Section 6 1MRK 511 287-UUS A Current protection 6.6.7 Operation principle The sampled analog phase currents are pre-processed and for each phase current the RMS value is derived. These phase current values are fed to the thermal overload protection, one time constant LFPTTR/LCPTTR (26) function.
  • Page 140 Section 6 1MRK 511 287-UUS A Current protection When the component temperature reaches the set alarm level AlarmTemp the output signal ALARM is set. When the component temperature reaches the set trip level TripTemp the output signal TRIP is set. There is also a calculation of the present time to operate with the present current.
  • Page 141 Section 6 1MRK 511 287-UUS A Current protection Final Temp PICKUP > TripTemp actual temperature Calculation of actual temperature IA, IB, IC Calculation of final temperature Actual Temp > ALARM AlarmTemp TRIP Actual Temp > TripTemp Lock- LOCKOUT logic Actual Temp <...
  • Page 142: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection 6.6.8 Technical data Table 65: LFPTTR/LCPTTR (26)technical data Function Range or value Accuracy IBase Reference current (0-400)% of ± 1.0% of I Reference temperature (0-600) °F, (0 - 300)°C ± 2.0°F, ±2.0°C Operate time: Time constant t = (0–1000) minutes IEC 60255-8, ±5% + 200 ms...
  • Page 143: Function Block

    Section 6 1MRK 511 287-UUS A Current protection Breaker failure protection (CCRBRF, 50BF) ensures fast back-up tripping of surrounding breakers in case the protected breaker fails to open. CCRBRF (50BF) can be current based, contact based, or an adaptive combination of these two conditions. Current check with extremely short reset time is used as check criterion to achieve high security against inadvertent operation.
  • Page 144: Settings

    Section 6 1MRK 511 287-UUS A Current protection Table 67: CCRBRF (50BF) Output signals Name Type Description TRBU BOOLEAN Back-up trip by breaker failure protection function TRRET BOOLEAN Retrip by breaker failure protection function 6.7.5 Settings Table 68: CCRBRF (50BF) Group settings (basic) Name Values (Range) Unit...
  • Page 145: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection 6.7.6 Monitored data Table 71: CCRBRF (50BF) Monitored data Name Type Values (Range) Unit Description REAL Measured current in phase A REAL Measured current in phase B REAL Measured current in phase C REAL Measured residual current 6.7.7...
  • Page 146 Section 6 1MRK 511 287-UUS A Current protection 30 ms BFI_3P BFI_A BFP Started A 150ms BLOCK Time out A Reset A Retrip Time Out A BackupTrip A ANSI09000976-3-en.vsd ANSI09000976 V3 EN Figure 53: Simplified logic scheme of the CCRBRF (50BF) starting logic Pickup_PH a>b FunctionMode...
  • Page 147: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection BUTripMode 1 out of 3 2 out of 4 1 out of 4 Current High A BFP Started A a>b IN> Contact Closed A Current High B From other Backup Time Out A Current High C phases Current High A...
  • Page 148: Stub Protection Stbptoc (50Stb)

    Section 6 1MRK 511 287-UUS A Current protection Function Range or value Accuracy Reset ratio > 95% Timers (0.000-60.000) s ± 0.5% ±10 ms Operate time for current 20 ms typically detection Reset time for current 10 ms maximum detection Stub protection STBPTOC (50STB) 6.8.1 Identification...
  • Page 149: Signals

    Section 6 1MRK 511 287-UUS A Current protection 6.8.4 Signals Table 73: STBPTOC (50STB) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function ENABLE BOOLEAN Enable stub protection usually with open disconnect switch (89b) Table 74: STBPTOC (50STB) Output signals...
  • Page 150: Operation Principle

    Section 6 1MRK 511 287-UUS A Current protection 6.8.7 Operation principle The sampled analog phase currents are pre-processed in a discrete Fourier filter (DFT) block. From the fundamental frequency components of each phase current the RMS value of each phase current is derived. These phase current values are fed to a comparator in the stub protection function STBPTOC (50STB).
  • Page 151: Function Block

    Section 6 1MRK 511 287-UUS A Current protection Pole discrepancy protection CCRPLD (52PD) 6.9.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pole discrepancy protection CCRPLD 52PD SYMBOL-S V1 EN 6.9.2 Functionality Circuit breakers and disconnectors can end up with their phases in different positions (close-open), due to electrical or mechanical failures.
  • Page 152: Signals

    Section 6 1MRK 511 287-UUS A Current protection 6.9.4 Signals Table 79: CCRPLD (52PD) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function CLOSECMD BOOLEAN Close command to CB OPENCMD BOOLEAN Open command to CB...
  • Page 153: Operation Principle

    Section 6 1MRK 511 287-UUS A Current protection 6.9.6 Monitored data Table 83: CCRPLD (52PD) Monitored data Name Type Values (Range) Unit Description IMin REAL Lowest phase current IMax REAL Highest phase current 6.9.7 Operation principle The detection of pole discrepancy can be made in two different ways. If the contact based function is used an external logic can be made by connecting the auxiliary contacts of the circuit breaker so that a pole discrepancy is indicated, see figure 60.
  • Page 154: Pole Discrepancy Signaling From Circuit Breaker

    Section 6 1MRK 511 287-UUS A Current protection PD Signal from CB EXTPDIND 150 ms 0-Trip CLOSECMD tTrip+200 ms OPENCMD CB oper monitor Unsymmetrical current detection ANSI08000014-2-en.vsd ANSI08000014 V2 EN Figure 61: Simplified block diagram of pole discrepancy function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
  • Page 155: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection 6.9.7.2 Unsymmetrical current detection Unsymmetrical current indicated if: • any phase current is lower than CurrUnsymPU of the highest current in the three phases. • the highest phase current is greater than CurrRelPU of IBase. If these conditions are true, an unsymmetrical condition is detected.
  • Page 156: Functionality

    Section 6 1MRK 511 287-UUS A Current protection 6.10.2 Functionality Conventional protection functions can not detect the broken conductor condition. Broken conductor check BRCPTOC (46) function, consisting of continuous phase selective current unsymmetrical check on the line where the IED is connected will give alarm or trip at detecting broken conductors.
  • Page 157: Operation Principle

    Section 6 1MRK 511 287-UUS A Current protection Table 88: BRCPTOC (46) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 6.10.6 Monitored data Table 89: BRCPTOC (46) Monitored data Name Type...
  • Page 158: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection The output trip signal TRIP is a three-phase trip. It can be used to command a trip to the circuit breaker or for alarm purpose only. TEST TEST-ACTIVE Block BRCPTOC=Yes PICKUP Function Enable BLOCK TRIP Unsymmetrical...
  • Page 159: Functionality

    Section 6 1MRK 511 287-UUS A Current protection 6.11 Directional over-/under-power protection GOPPDOP/ GUPPDUP (32/37) 6.11.1 Functionality The directional over-/under-power protection GOPPDOP (32)/GUPPDUP (37) can be used wherever a high/low active, reactive or apparent power protection or alarming is required. The functions can alternatively be used to check the direction of active or reactive power flow in the power system.
  • Page 160: Function Block

    Section 6 1MRK 511 287-UUS A Current protection 6.11.2.2 Function block GOPPDOP (32) I3P* TRIP V3P* TRIP1 BLOCK TRIP2 BLK1 BFI_3P BLK2 PICKUP1 PICKUP2 PPERCENT QPERCENT ANSI08000506-1-en.vsd ANSI08000506 V1 EN Figure 64: GOPPDOP (32) function block 6.11.2.3 Signals Table 91: GOPPDOP (32) Input signals Name Type...
  • Page 161: Settings

    Section 6 1MRK 511 287-UUS A Current protection 6.11.2.4 Settings Table 93: GOPPDOP (32) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled OpMode1 Disabled OverPower Operation mode 1 OverPower Power1 0.0 - 500.0 Power setting for stage 1 in % of calculated power base value...
  • Page 162: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection 6.11.2.5 Monitored data Table 96: GOPPDOP (32) Monitored data Name Type Values (Range) Unit Description REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL MVAr Reactive power QPERCENT REAL Reactive power in % of...
  • Page 163: Signals

    Section 6 1MRK 511 287-UUS A Current protection 6.11.3.3 Signals Table 97: GUPPDUP (37) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN...
  • Page 164: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection Name Values (Range) Unit Step Default Description Power2 0.0 - 500.0 Power setting for stage 2 in % of calculated power base value Angle2 -180.0 - 180.0 Characteristic angle for stage 2 TripDelay2 0.010 - 6000.000 0.001...
  • Page 165 Section 6 1MRK 511 287-UUS A Current protection Chosen current phasors Derivation of Complex S( angle) S( angle) < TRIP 1 S( composant) power Power1 Chosen voltage calculation in Char angle phasors PICKUP1 S( angle) < TRIP2 Power2 PICKUP2 P = POWRE Q = POWIM ANSI06000438-2-en.vsd ANSI06000438 V2 EN...
  • Page 166: Low Pass Filtering

    Section 6 1MRK 511 287-UUS A Current protection Mode Set value: Formula used for complex power calculation × (Equation 26) EQUATION2060-ANSI V1 EN = × × (Equation 27) EQUATION2061-ANSI V1 EN = × × (Equation 28) EQUATION2062-ANSI V1 EN = × ×...
  • Page 167: Technical Data

    Section 6 1MRK 511 287-UUS A Current protection make slower measurement response to the step changes in the measured quantity. Filtering is performed in accordance with the following recursive formula: S TD S TD S ⋅ − ⋅ Calculated (Equation 30) EQUATION1959-ANSI V1 EN Where is a new measured value to be used for the protection function...
  • Page 168: Identification

    Section 6 1MRK 511 287-UUS A Current protection 6.12 Negative sequence based overcurrent function DNSPTOC (46) 6.12.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Negative sequence based overcurrent DNSPTOC function 3I2> IEC09000132 V2 EN 6.12.2 Functionality Negative sequence based overcurrent function DNSPTOC (46) may be used in power line...
  • Page 169: Function Block

    Section 6 1MRK 511 287-UUS A Current protection 6.12.3 Function block DNSPTOC (46) I3P* TRIP V3P* TROC1 BLOCK TROC2 BLKOC1 BFI_3P ENMLTOC1 PU_OC1 BLKOC2 PU_OC2 ENMLTOC2 DIROC1 DIROC2 CURRENT VOLTAGE VIANGLE ANSI09000125-1-en.vsd ANSI09000125 V1 EN Figure 67: DNSPTOC (46) function block 6.12.4 Signals Table 105:...
  • Page 170: Settings

    Section 6 1MRK 511 287-UUS A Current protection Name Type Description CURRENT REAL Measured current value VOLTAGE REAL Measured voltage value UIANGLE REAL Angle between voltage and current 6.12.5 Settings Table 107: DNSPTOC (46) Group settings (basic) Name Values (Range) Unit Step Default...
  • Page 171: Monitored Data

    Section 6 1MRK 511 287-UUS A Current protection Table 108: DNSPTOC (46) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 6.12.6 Monitored data Table 109: DNSPTOC (46) Monitored data Name Type...
  • Page 172 Section 6 1MRK 511 287-UUS A Current protection Function Range or value Accuracy Operate time, directional 30 ms typically at 0 to 2 x I 20 ms typically at 0 to 10 x I Reset time, directional 40 ms typically at 2 to 0 x I Critical impulse time 10 ms typically at 0 to 2 x I 2 ms typically at 0 to 10 x I...
  • Page 173: Two Step Undervoltage Protection Uv2Ptuv (27)

    Section 7 1MRK 511 287-UUS A Voltage protection Section 7 Voltage protection Two step undervoltage protection UV2PTUV (27) 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U< SYMBOL-R-2U-GREATER-THAN V2 EN 7.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 174: Signals

    Section 7 1MRK 511 287-UUS A Voltage protection 7.1.4 Signals Table 111: UV2PTUV (27) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN Block of step 1 BLK2 BOOLEAN Block of step 2...
  • Page 175: Monitored Data

    Section 7 1MRK 511 287-UUS A Voltage protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 5.000 Minimum operate time for inverse curves for step 1 0.05 - 1.10 0.01 0.05 Time multiplier for the inverse time delay for step 1 OperationStep2 Disabled...
  • Page 176: Measurement Principle

    Section 7 1MRK 511 287-UUS A Voltage protection UV2PTUV (27) can be set to measure phase-to-ground fundamental value, phase-to- phase fundamental value, phase-to-ground true RMS value or phase-to-phase true RMS value. The choice of the measuring is done by the parameter ConnType. The voltage related settings are made in percent of base voltage which is set in kV phase-to-phase voltage.
  • Page 177: Blocking

    Section 7 1MRK 511 287-UUS A Voltage protection The type B curve is described as: × 0.055 æ ö Vpickup < -V × ç ÷ è ø < Vpickup (Equation 34) EQUATION1608 V1 EN The lowest voltage is always used for the inverse time delay integration. The details of the different inverse time characteristics are shown in section 19.3 "Inverse time characteristics".
  • Page 178: Design

    Section 7 1MRK 511 287-UUS A Voltage protection 7.1.7.4 Design The voltage measuring elements continuously measure the three phase-to-neutral voltages or the three phase-to-phase voltages. Recursive fourier filters or true RMS filters of input voltage signals are used. The voltages are individually compared to the set value, and the lowest voltage is used for the inverse time characteristic integration.
  • Page 179: Identification

    Section 7 1MRK 511 287-UUS A Voltage protection 7.1.8 Technical data Table 116: UV2PTUV (27) technical data Function Range or value Accuracy VBase Operate voltage, low and (1–100)% of ± 0.5% of V high step Reset ratio <102% Inverse time See table characteristics for low and high step, see table...
  • Page 180: Function Block

    Section 7 1MRK 511 287-UUS A Voltage protection Two step overvoltage protection (OV2PTOV, 59) function can be used to detect open line ends, normally then combined with a directional reactive over-power function to supervise the system voltage. When triggered, the function will cause an alarm, switch in reactors, or switch out capacitor banks.
  • Page 181: Settings

    Section 7 1MRK 511 287-UUS A Voltage protection Name Type Description PU_ST1_A BOOLEAN Pick up signal from step 1 phase A PU_ST1_B BOOLEAN Pick up signal from step 1 phase B PU_ST1_C BOOLEAN Pick up signal from step 1 phase C PU_ST2 BOOLEAN Start signal from step 2...
  • Page 182: Operation Principle

    Section 7 1MRK 511 287-UUS A Voltage protection Table 120: OV2PTOV (59) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups ConnType PhN DFT PhN DFT Group selector for connection type PhN RMS PhPh DFT...
  • Page 183: Measurement Principle

    Section 7 1MRK 511 287-UUS A Voltage protection Vpickup VBase kV ) / 3 > ⋅ (Equation 35) EQUATION1610 V2 EN and operation for phase-to-phase voltage over: > × Vpickup (%) VBase(kV) (Equation 36) EQUATION1992 V1 EN When phase-to-ground voltage measurement is selected the function automatically introduces division of the base value by the square root of three.
  • Page 184: Blocking

    Section 7 1MRK 511 287-UUS A Voltage protection ⋅ 0 035 − V Vpickup − > ⋅ − Vpickup > (Equation 38) ANSIEQUATION2287 V2 EN The type C curve is described as: ⋅ 0 035 V Vpickup − > ⋅ −...
  • Page 185: Design

    Section 7 1MRK 511 287-UUS A Voltage protection BLOCK: blocks all outputs BLK1: blocks all pickup and trip outputs related to step 1 BLK2: blocks all pickup and trip outputs related to step 2 7.2.7.4 Design The voltage measuring elements continuously measure the three phase-to-ground voltages or the three phase-to-phase voltages.
  • Page 186 Section 7 1MRK 511 287-UUS A Voltage protection Comparator PU_ST1_A VA or VAB V > Pickup1 Phase A Voltage Phase Selector PU_ST1_B Comparator OpMode1 VB or VBC Phase B V > Pickup1 1 out of 3 PU_ST1_C 2 outof 3 Pickup Phase C 3 out of 3...
  • Page 187: Technical Data

    Section 7 1MRK 511 287-UUS A Voltage protection 7.2.8 Technical data Table 122: OV2PTOV (59) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V and 2 ± 0.5% of V at V > V Reset ratio >98% Inverse time...
  • Page 188: Function Block

    Section 7 1MRK 511 287-UUS A Voltage protection single voltage input transformer fed from a broken delta or neutral point voltage transformer. ROV2PTOV (59N) has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. 7.3.3 Function block ROV2PTOV (59N)
  • Page 189: Settings

    Section 7 1MRK 511 287-UUS A Voltage protection 7.3.5 Settings Table 125: ROV2PTOV (59N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time Definite time Selection of time delay curve type for step 1...
  • Page 190: Measurement Principle

    Section 7 1MRK 511 287-UUS A Voltage protection adding the input phase voltages. 3V may also be input single phase by either measuring directly from a voltage transformer in the neutral of a power transformer, or from a secondary broken delta connection of a transformer with a wye-grounded primary. ROV2PTOV (59N) has two steps with separate time delays.
  • Page 191 Section 7 1MRK 511 287-UUS A Voltage protection Comparator Phase 1 PU_ST1 VN > Pickup1 TRST1 Pickup PICKUP & Trip Output Logic Time integrator TRIP or Timer t1 Step 1 PU_ST2 Comparator Phase 1 TRST2 VN > Pickup2 Pickup PICKUP &...
  • Page 192: Technical Data

    Section 7 1MRK 511 287-UUS A Voltage protection 7.3.8 Technical data Table 128: ROV2PTOV (59N) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V ± 0.5% of V at V > V Operate voltage, step 2 (1–100)% of VBase...
  • Page 193: Signals

    Section 7 1MRK 511 287-UUS A Voltage protection The operation of LOVPTUV (27) is supervised by the fuse failure supervision SDDRFUF. 7.4.3 Function block LOVPTUV (27) V3P* TRIP BLOCK PICKUP CBOPEN BLKV ANSI09000279-1-en.vsd ANSI09000279 V1 EN Figure 76: LOVPTUV (27) function block 7.4.4 Signals Table 129:...
  • Page 194: Operation Principle

    Section 7 1MRK 511 287-UUS A Voltage protection Table 132: LOVPTUV (27) Group settings (advanced) Name Values (Range) Unit Step Default Description tPulse 0.050 - 60.000 0.001 0.150 Duration of TRIP pulse tBlock 0.000 - 60.000 0.001 5.000 Time delay to block when all 3ph voltages are not low tRestore 0.000 - 60.000...
  • Page 195 Section 7 1MRK 511 287-UUS A Voltage protection LOSS OF VOLTAGE CHECK FUNCTION TEST TEST-ACTIVE & BlockLOV = Yes START BLOCK >1 Function Enable tTrip tPulse TRIP & STUL1N & STUL2N only 1 or 2 phases are low for Latched at least 10 s (not three) STUL3N Enable...
  • Page 196: Technical Data

    Section 7 1MRK 511 287-UUS A Voltage protection 7.4.7 Technical data Table 134: LOVPTUV (27) technical data Function Range or value Accuracy Operate voltage (0–100)% of VBase ± 0.5% of V Reset ratio <105% Pulse timer (0.050–60.000) s ± 0.5% ± 25 ms Timers (0.000–60.000) s ±...
  • Page 197: Identification

    Section 8 1MRK 511 287-UUS A Frequency protection Section 8 Frequency protection Underfrequency protection SAPTUF (81) 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN 8.1.2 Functionality Underfrequency occurs as a result of a lack of sufficient generation in the network.
  • Page 198: Signals

    Section 8 1MRK 511 287-UUS A Frequency protection 8.1.4 Signals Table 135: SAPTUF (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function Table 136: SAPTUF (81) Output signals Name Type Description...
  • Page 199: Measurement Principle

    Section 8 1MRK 511 287-UUS A Frequency protection than the set time delay the TRIP signal is issued. To avoid an unwanted trip due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function, that is, if the voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no PICKUP or TRIP signal is issued.
  • Page 200: Time Delay

    Section 8 1MRK 511 287-UUS A Frequency protection 8.1.7.2 Time delay The time delay for SAPTUF (81) is a settable definite time delay, specified by the setting tDelay. Trip signal issuing requires that the under frequency condition continues for at least the user set time delay.
  • Page 201: Functionality

    Section 8 1MRK 511 287-UUS A Frequency protection Function Range or value Accuracy Reset time, pickup function At 50 Hz: 60 ms typically at f -0.5 Hz to f +0.5 Hz At 60 Hz: 50 ms typically at f -0.5 Hz to f +0.5 Hz Operate time delay (0.000-60.000)s...
  • Page 202: Signals

    Section 8 1MRK 511 287-UUS A Frequency protection 8.2.3 Function block SAPTOF (81) V3P* TRIP BLOCK BLKDMAGN ANSI09000280-1-en.vsd ANSI09000280 V1 EN Figure 81: SAPTOF (81) function block 8.2.4 Signals Table 140: SAPTOF (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK...
  • Page 203: Operation Principle

    Section 8 1MRK 511 287-UUS A Frequency protection 8.2.7 Operation principle Overfrequency protection SAPTOF (81) is used to detect high power system frequency. SAPTOF (81) has a settable definite time delay. If the frequency remains above the set value for a time period greater than the set time delay the TRIP signal is issued. To avoid an unwanted TRIP due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function, that is, if the voltage is lower than the set blocking voltage in the preprocessing function,...
  • Page 204: Time Delay

    Section 8 1MRK 511 287-UUS A Frequency protection 8.2.7.2 Time delay The time delay for SAPTOF (81) is a settable definite time delay, specified by the setting tDelay. If the PICKUP condition frequency ceases during the delay time, and is not fulfilled again within a defined reset time, the PICKUP output is reset.
  • Page 205: Functionality

    Section 8 1MRK 511 287-UUS A Frequency protection 8.2.8 Technical data Table 144: SAPTOF (81) technical data Function Range or value Accuracy Operate value, pickup function (35.00-75.00) Hz ± 2.0 mHz at symmetrical three- phase voltage Reset ratio >0.999 Operate time, pickup function At 50 Hz: 200 ms typically at f -0.5 Hz to f +0.5 Hz...
  • Page 206: Function Block

    Section 8 1MRK 511 287-UUS A Frequency protection 8.3.3 Function block SAPFRC (81) V3P* TRIP BLOCK PICKUP RESTORE BLKDMAGN ANSI09000281-1-en.vsd ANSI09000281 V1 EN Figure 84: SAPFRC (81) function block 8.3.4 Signals Table 145: SAPFRC (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs...
  • Page 207: Operation Principle

    Section 8 1MRK 511 287-UUS A Frequency protection 8.3.6 Operation principle Rate-of-change frequency protection SAPFRC (81) is used to detect fast power system frequency changes at an early stage. It (81) has a settable definite time delay.To avoid an unwanted trip due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function that is, if the voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no PICKUP or TRIP signal is issued.
  • Page 208: Design

    Section 8 1MRK 511 287-UUS A Frequency protection 8.3.6.3 Design BLOCK BLOCK freqNotValid BLKDMAGN Pickup Rate-of-Change & Comparator of Frequency Trip Output PICKUP Definite Time Delay [PUFreqGrad<0 PICKUP Logic tTrip df/dt < PUFreqGrad] [PUFreqGrad>0 TRIP df/dt > PUFreqGrad] Then PICKUP 100 ms Frequency Comparator...
  • Page 209: Current Circuit Supervision Ccsrdif (87)

    Section 9 1MRK 511 287-UUS A Secondary system supervision Section 9 Secondary system supervision Current circuit supervision CCSRDIF (87) 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current circuit supervision CCSRDIF 9.1.2 Functionality Open or short circuited current transformer cores can cause unwanted operation of many protection functions such as differential, ground-fault current and negative-sequence current functions.
  • Page 210: Signals

    Section 9 1MRK 511 287-UUS A Secondary system supervision 9.1.4 Signals Table 149: CCSRDIF (87) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL IREF GROUP Group signal for current reference SIGNAL BLOCK BOOLEAN Block of function Table 150: CCSRDIF (87) Output signals...
  • Page 211: Operation Principle

    Section 9 1MRK 511 287-UUS A Secondary system supervision 9.1.6 Operation principle Current circuit supervision CCSRDIF (87) compares the absolute value of the vectorial sum of the three phase currents |ΣIphase| and the numerical value of the residual current |Iref| from another current transformer set, see figure 87. The FAIL output will be set to a logical one when the following criteria are fulfilled: •...
  • Page 212: Technical Data

    Section 9 1MRK 511 287-UUS A Secondary system supervision | åI | - | I phase Slope = 1 Operation Slope = 0.8 area MinOp | åI | + | I phase 99000068.vsd IEC99000068 V1 EN Figure 88: Operate characteristics Due to the formulas for the axis compared, |SIphase | - |I ref | and |S I phase | + | I ref | respectively, the slope can not be above 2.
  • Page 213: Function Block

    Section 9 1MRK 511 287-UUS A Secondary system supervision 9.2.2 Functionality The aim of the fuse failure supervision function SDDRFUF is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid inadvertent operations that otherwise might occur. The fuse failure supervision function basically has three different detection methods, negative sequence and zero sequence based detection and an additional delta voltage and delta current detection.
  • Page 214: Signals

    Section 9 1MRK 511 287-UUS A Secondary system supervision 9.2.4 Signals Table 155: SDDRFUF Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BOOLEAN Active when circuit breaker is closed...
  • Page 215: Monitored Data

    Section 9 1MRK 511 287-UUS A Secondary system supervision Name Values (Range) Unit Step Default Description 3I2PU 1 - 100 Pickup of negative sequence undercurrent element in % of IBase OpDVDI Disabled Disabled Operation of change based function Disable/ Enabled Enable DVPU 1 - 100...
  • Page 216: Operation Principle

    Section 9 1MRK 511 287-UUS A Secondary system supervision 9.2.7 Operation principle 9.2.7.1 Zero and negative sequence detection The zero and negative sequence function continuously measures the currents and voltages in all three phases and calculates: (see figure 90) • the zero-sequence voltage 3V •...
  • Page 217: Delta Current And Delta Voltage Detection

    Section 9 1MRK 511 287-UUS A Secondary system supervision Sequence Detection 3I0PU CurrZeroSeq Zero sequence filter CurrNegSeq a>b 100 ms Negative sequence filter FuseFailDetZeroSeq a>b 100 ms 3I2PU FuseFailDetNegSeq 3V0PU VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3V2PU ANSI10000036-2-en.vsd ANSI10000036 V2 EN...
  • Page 218 Section 9 1MRK 511 287-UUS A Secondary system supervision • The magnitude of the phase-ground voltage has been above VPPU for more than 1.5 cycle • The magnitude of DV is higher than the setting DVPU • The magnitude of DI is below the setting DIPU and at least one of the following conditions are fulfilled: •...
  • Page 219 Section 9 1MRK 511 287-UUS A Secondary system supervision DVDI Detection DVDI detection Phase 1 One cycle delay |DI| a>b DIPU One cycle delay |DV| a>b DVPU a>b 20 ms 1.5 cycle VPPU DVDI detection Phase 2 Same logic as for phase 1 DVDI detection Phase 3 Same logic as for phase 1 a<b...
  • Page 220: Dead Line Detection

    Section 9 1MRK 511 287-UUS A Secondary system supervision 9.2.7.3 Dead line detection A simplified diagram for the functionality is found in figure 92. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values VDLDPU and IDLDPU.
  • Page 221 Section 9 1MRK 511 287-UUS A Secondary system supervision • V0I0 OR V2I2. Both negative and zero sequence is activated and working in parallel in an OR-condition. • V0I0 AND V2I2. Both negative and zero sequence is activated and working in series (AND-condition for operation).
  • Page 222 Section 9 1MRK 511 287-UUS A Secondary system supervision of MCBOP signal to prevent the unwanted operation of voltage dependent function due to non simultaneous closing of the main contacts of the miniature circuit breaker. The input signal 89b is supposed to be connected via a terminal binary input to the N.C. auxiliary contact of the line disconnector.
  • Page 223 Section 9 1MRK 511 287-UUS A Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All VP < VSealInPU SealIn = Enabled Any VP < VsealInPU FuseFailDetDVDI OpDVDI = Enabled 5 sec FuseFailDetZeroSeq FuseFailDetNegSeq V2I2 V0I0...
  • Page 224: Technical Data

    Section 9 1MRK 511 287-UUS A Secondary system supervision Figure 93: Simplified logic diagram for fuse failure supervision function, Main logic 9.2.8 Technical data Table 160: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of VBase ±...
  • Page 225: Signals

    Section 9 1MRK 511 287-UUS A Secondary system supervision 9.3.3 Function block GUID-6F85BD70-4D18-4A00-A410-313233025F3A V2 EN Figure 94: Function block 9.3.4 Signals Table 161: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 162: TCSSCBR Output signals...
  • Page 226: Technical Data

    Section 9 1MRK 511 287-UUS A Secondary system supervision TCS_STATE status Timer ALARM BLOCK ANSI11000289 V1 EN Figure 95: Functional module diagram Trip circuit supervision generates a current of approximately 1.0 mA through the supervised circuit. It must be ensured that this current will not cause a latch up of the controlled object.
  • Page 227: Functionality

    Section 10 1MRK 511 287-UUS A Control Section 10 Control 10.1 Synchronism check, energizing check, and synchronizing SESRSYN (25) 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchrocheck, energizing check, and SESRSYN synchronizing sc/vc SYMBOL-M V1 EN 10.1.2 Functionality...
  • Page 228: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.1.3 Function block SESRSYN (25) V3PB1* SYNOK V3PB2* AUTOSYOK V3PL1* AUTOENOK V3PL2* MANSYOK BLOCK MANENOK BLKSYNCH TSTSYNOK BLKSC TSTAUTSY BLKENERG TSTMANSY BUS1_OP TSTENOK BUS1_CL VSELFAIL BUS2_OP B1SEL BUS2_CL B2SEL LINE1_OP L1SEL LINE1_CL L2SEL LINE2_OP SYNPROGR LINE2_CL...
  • Page 229 Section 10 1MRK 511 287-UUS A Control Name Type Default Description BLKENERG BOOLEAN Block energizing check BUS1_OP BOOLEAN Open status for CB or disconnector connected to bus1 BUS1_CL BOOLEAN Close status for CB and disconnector connected to bus1 BUS2_OP BOOLEAN Open status for CB or disconnector connected to bus2 BUS2_CL BOOLEAN...
  • Page 230: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description B1SEL BOOLEAN Bus1 selected B2SEL BOOLEAN Bus2 selected L1SEL BOOLEAN Line1 selected L2SEL BOOLEAN Line2 selected SYNPROGR BOOLEAN Synchronizing in progress SYNFAIL BOOLEAN Synchronizing failed FRDIFSYN BOOLEAN Frequency difference out of limit for synchronizing FRDERIVA BOOLEAN Frequency derivative out of limit for synchronizing...
  • Page 231 Section 10 1MRK 511 287-UUS A Control Name Values (Range) Unit Step Default Description OperationSynch Disabled Disabled Operation for synchronizing function Off/On Enabled FreqDiffMin 0.003 - 0.250 0.001 0.010 Minimum frequency difference limit for synchronizing FreqDiffMax 0.050 - 0.500 0.001 0.200 Maximum frequency difference limit for synchronizing...
  • Page 232: Monitored Data

    Section 10 1MRK 511 287-UUS A Control Table 168: SESRSYN (25) Non group settings (basic) Name Values (Range) Unit Step Default Description GblBaseSelBus 1 - 6 Selection of one of the Global Base Value groups, Bus GblBaseSelLine 1 - 6 Selection of one of the Global Base Value groups, Line SelPhaseBus1...
  • Page 233: Operation Principle

    Section 10 1MRK 511 287-UUS A Control 10.1.7 Operation principle 10.1.7.1 Basic functionality The synchronism check function measures the conditions across the circuit breaker and compares them to set limits. The output is only given when all measured quantities are simultaneously within their set limits.
  • Page 234 Section 10 1MRK 511 287-UUS A Control If both sides are higher than 80% of the Ubase values, the measured values are compared with the set values for acceptable frequency, phase angle and voltage difference: FreqDiff, PhaseDiffand VDiffSC. If a compensation factor is set due to the use of different voltages on the bus and line, the factor is deducted from the line voltage before the comparison of the phase angle values.
  • Page 235: Synchronizing

    Section 10 1MRK 511 287-UUS A Control Note! Similar logic for Manual Synchrocheck. OperationSC = Enabled TSTSC BLKSC BLOCK AUTOSYOK 0-tSCA VDiffSC 50 ms Bus voltage >80% of GblBaseSelBus VOKSC Line voltage >80% of GblBaseSelLine VDIFFSC FRDIFFA FreqDiffA PHDIFFA PhaseDiffA VDIFFME voltageDifferenceValue FRDIFFME...
  • Page 236 Section 10 1MRK 511 287-UUS A Control voltage difference between bus and line is acceptable, the measured values are also compared with the set values for acceptable frequency FreqDiffMax and FreqDiffMin, rate of change of frequency FreqRateChange and phase angle, which has to be smaller than the internally preset value of 15 degrees.
  • Page 237: Energizing Check

    Section 10 1MRK 511 287-UUS A Control 10.1.7.4 Energizing check Voltage values are measured in the IED and are available for evaluation by the Synchronism check function. The function measures voltages on the busbar and the line to verify whether they are live or dead.
  • Page 238: Voltage Selection

    Section 10 1MRK 511 287-UUS A Control 10.1.7.6 Voltage selection The voltage selection module including supervision of included voltage transformers for the different arrangements is a basic part of the SESRSYN (25) function and determines the voltages fed to the Synchronizing, Synchrocheck and Energizing check functions. This includes the selection of the appropriate Line and Bus voltages and MCB supervision.
  • Page 239: Voltage Selection For A Breaker-And-A-Half Circuit Breaker Arrangement

    Section 10 1MRK 511 287-UUS A Control BUS1_OP B1SEL BUS1_CL BUS2_OP B2SEL BUS2_CL invalidSelection busVoltage bus1Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF BLOCK en05000779_2_ansi.vsd ANSI05000779 V2 EN Figure 99: Logic diagram for the voltage selection function of a single circuit breaker with double busbars 10.1.7.8 Voltage selection for a breaker-and-a-half circuit breaker arrangement Note that with breaker-and-a-half schemes three Synchronism check functions must be...
  • Page 240 Section 10 1MRK 511 287-UUS A Control the selected Line voltage as a reference to the fixed Bus 1 voltage, which indicates B1SEL. The fuse supervision is connected to VL1OK-VL1FF, VL2OK-VL2FF and with alternative Healthy or Failing MCB signals depending on what is available from each MCB.
  • Page 241 Section 10 1MRK 511 287-UUS A Control LINE1_OP L1SEL LINE1_CL BUS1_OP L2SEL BUS1_CL B2SEL LINE2_OP invalidSelection LINE2_CL BUS2_OP BUS2_CL lineVoltage line1Voltage line2Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000780_2_ansi.vsd ANSI05000780 V2 EN Figure 100: Simplified logic diagram for the voltage selection function for a bus circuit breaker in a breaker-and-a- half arrangement Technical manual...
  • Page 242 Section 10 1MRK 511 287-UUS A Control LINE1_OP L1SEL LINE1_CL B1SEL BUS1_OP BUS1_CL line1Voltage busVoltage bus1Voltage LINE2_OP L2SEL LINE2_CL B2SEL invalidSelection BUS2_OP BUS2_CL lineVoltage line2Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000781_2_ansi.vsd ANSI05000781 V2 EN Figure 101: Simplified logic diagram for the voltage selection function for the tie circuit breaker in breaker-and-a- half arrangement.
  • Page 243: Technical Data

    Section 10 1MRK 511 287-UUS A Control 10.1.8 Technical data Table 170: SESRSYN (25) technical data Function Range or value Accuracy Phase shift, j (-180 to 180) degrees line Voltage ratio, V 0.500 - 2.000 line Reset ratio, synchronism check >...
  • Page 244: Functionality

    Section 10 1MRK 511 287-UUS A Control 10.2.1 Identification Function Description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Autorecloser for 3-phase operation SMBRREC O->I SYMBOL-L V1 EN 10.2.2 Functionality The autorecloser for 3-phase operation SMBRREC (79) function provides high-speed and/or delayed auto-reclosing for single breaker applications.
  • Page 245: Signals

    Section 10 1MRK 511 287-UUS A Control 10.2.4 Signals Table 171: SMBRREC (79) Input signals Name Type Default Description BOOLEAN Enables AR when Operation = ExternalCtrl BOOLEAN Disables AR when Operation = ExternalCtrl BLKON BOOLEAN Sets AR in blocked state BLKOFF BOOLEAN Releases AR from blocked state...
  • Page 246: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description WFMASTER BOOLEAN Signal to Slave issued by Master for sequential reclosing COUNT3P1 INTEGER Counting the number of three-phase reclosing shot 1 COUNT3P2 INTEGER Counting the number of three-phase reclosing shot 2 COUNT3P3 INTEGER Counting the number of three-phase reclosing shot 3...
  • Page 247: Operation Principle

    Section 10 1MRK 511 287-UUS A Control Name Values (Range) Unit Step Default Description CBReadyType Select type of circuit breaker ready signal CO/OCO t2 3Ph 0.00 - 6000.00 0.01 30.00 Open time for shot 2, three-phase t3 3Ph 0.00 - 6000.00 0.01 30.00 Open time for shot 3, three-phase...
  • Page 248 Section 10 1MRK 511 287-UUS A Control One also has to configure and connect signals from manual trip commands to input INHIBIT. The logic for switching the auto-recloser Enabled/Disabled and the starting of the reclosing is shown in figure 103. The following should be considered: •...
  • Page 249: Control Of The Auto-Reclosing Open Time

    Section 10 1MRK 511 287-UUS A Control 10.2.6.2 Control of the auto-reclosing open time There are settings for three-phase auto-reclosing open time, t1 3Ph to t5 3Ph. 10.2.6.3 Long trip signal In normal circumstances the trip command resets quickly due to fault clearing. The user can set a maximum trip pulse duration tTrip.
  • Page 250 Section 10 1MRK 511 287-UUS A Control "SMBRREC Open time" timer From logic for 3PT1TO 0-t1 3Ph reclosing programs 3PT1TO 3PT2TO 3PT3TO 3PT4TO Pulse 3PT5TO SYNC initiate Blocking out CBREADY SMBRREC State Control 0-tSync COUNTER Shot 0 Shot 1 Shot 2 Shot 3 Shot 4 Pulse (above)
  • Page 251 Section 10 1MRK 511 287-UUS A Control pulse CLOSECMD initiate 3PT1 COUNT3P1 counter 3PT2 COUNT3P2 counter 3PT3 COUNT3P3 counter 3PT4 COUNT3P4 counter 3PT5 COUNT3P5 counter COUNTAR RSTCOUNT counter ANSI08000245-1-en.vsd ANSI08000245 V1 EN Figure 105: Pulsing of closing command and driving the operation counters Transient fault After the reclosing command the reset timer tReset starts running for the set time.
  • Page 252 Section 10 1MRK 511 287-UUS A Control initiate block start UNSUCCL shot 0 UnsucClByCBchk = CBcheck Pulse SMBRREC (Closing) 0-tUnsucCl CBclosed ANSI09000203-2-en.vsd ANSI09000203 V2 EN Figure 106: Issue of signal UNSUCCL, unsuccessful reclosing Automatic continuation of the reclosing sequence The auto-reclosing function can be programmed to proceed to the following reclosing shots (if selected) even if the initiate signals are not received from the protection functions, but the breaker is still not closed.
  • Page 253 Section 10 1MRK 511 287-UUS A Control Initiation of reclosing from CB open information If a user wants to apply initiation of auto-reclosing from CB open position instead of from protection trip signals, the function offers such a possibility. This starting mode is selected by a setting parameter StartByCBOpen = Enabled.
  • Page 254: Functionality

    Section 10 1MRK 511 287-UUS A Control 10.2.7 Technical data Table 175: SMBRREC (79) technical data Function Range or value Accuracy Number of autoreclosing shots 1 - 5 Autoreclosing open time: shot 1 - t1 3Ph (0.000-60.000) s ± 0.5% ± 25 ms shot 2 - t2 3Ph (0.00-6000.00) s shot 3 - t3 3Ph...
  • Page 255: Switch Controller Scswi

    Section 10 1MRK 511 287-UUS A Control Each of the 3 circuit breaker controllers SXCBR provides the actual position status and pass the commands to the primary circuit breaker and supervises the switching operation and positions. Each of the 7 circuit switch controllers SXSWI provides the actual position status and pass the commands to the primary disconnectors and earthing switches and supervises the switching operation and positions.
  • Page 256: Signals

    Section 10 1MRK 511 287-UUS A Control 10.3.2.4 Signals Table 176: SCSWI Input signals Name Type Default Description BLOCK BOOLEAN Block of function PSTO INTEGER Operator place selection L_SEL BOOLEAN Select signal from local panel L_OPEN BOOLEAN Open signal from local panel L_CLOSE BOOLEAN Close signal from local panel...
  • Page 257: Functionality

    Section 10 1MRK 511 287-UUS A Control 10.3.2.5 Settings Table 178: SCSWI Non group settings (basic) Name Values (Range) Unit Step Default Description CtlModel Dir Norm SBO Enh Specifies control model type SBO Enh PosDependent Always permitted Always permitted Permission to operate depending on the Not perm at 00/11 position tSelect...
  • Page 258: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.3.3.3 Function block SXCBR BLOCK XPOS LR_SWI EXE_OP OPEN EXE_CL CLOSE SUBSTED BL_OPEN OP_BLKD BL_CLOSE CL_BLKD BL_UPD UPD_BLKD POSOPEN POSITION POSCLOSE OPENPOS TR_OPEN CLOSEPOS TR_CLOSE TR_POS RS_CNT CNT_VAL L_CAUSE IEC09000089_1_en.vsd IEC09000089 V1 EN Figure 110: SXCBR function block 10.3.3.4...
  • Page 259: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description UPD_BLKD BOOLEAN Update of position indication is blocked POSITION INTEGER Apparatus position indication OPENPOS BOOLEAN Apparatus open position CLOSEPOS BOOLEAN Apparatus closed position TR_POS INTEGER Truck position indication CNT_VAL INTEGER Operation counter value L_CAUSE INTEGER...
  • Page 260: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.3.4.3 Function block SXSWI BLOCK XPOS LR_SWI EXE_OP OPEN EXE_CL CLOSE SUBSTED BL_OPEN OP_BLKD BL_CLOSE CL_BLKD BL_UPD UPD_BLKD POSOPEN POSITION POSCLOSE OPENPOS TR_OPEN CLOSEPOS TR_CLOSE TR_POS RS_CNT CNT_VAL L_CAUSE IEC09000092_1_en.vsd IEC09000092 V1 EN Figure 111: SXSWI function block 10.3.4.4...
  • Page 261: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description UPD_BLKD BOOLEAN Update of position indication is blocked POSITION INTEGER Apparatus position indication OPENPOS BOOLEAN Apparatus open position CLOSEPOS BOOLEAN Apparatus closed position TR_POS INTEGER Truck position indication CNT_VAL INTEGER Operation counter value L_CAUSE INTEGER...
  • Page 262: Functionality

    Section 10 1MRK 511 287-UUS A Control 10.3.5.2 Functionality The Bay control QCBAY function is used together with Local remote and local remote control functions to handle the selection of the operator place per bay. QCBAY also provides blocking functions that can be distributed to different apparatuses within the bay. 10.3.5.3 Function block QCBAY...
  • Page 263: Settings

    Section 10 1MRK 511 287-UUS A Control 10.3.5.5 Settings Table 187: QCBAY Non group settings (basic) Name Values (Range) Unit Step Default Description AllPSTOValid Priority Priority Priority of originators No priority 10.3.6 Local remote LOCREM 10.3.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 264: Settings

    Section 10 1MRK 511 287-UUS A Control Table 189: LOCREM Output signals Name Type Description BOOLEAN Control is disabled LOCAL BOOLEAN Local control is activated REMOTE BOOLEAN Remote control is activated VALID BOOLEAN Outputs are valid 10.3.6.5 Settings Table 190: LOCREM Non group settings (basic) Name Values (Range)
  • Page 265: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.3.7.3 Function block LOCREMCTRL ^PSTO1 ^HMICTR1 ^PSTO2 ^HMICTR2 ^PSTO3 ^HMICTR3 ^PSTO4 ^HMICTR4 ^PSTO5 ^HMICTR5 ^PSTO6 ^HMICTR6 ^PSTO7 ^HMICTR7 ^PSTO8 ^HMICTR8 ^PSTO9 ^HMICTR9 ^PSTO10 ^HMICTR10 ^PSTO11 ^HMICTR11 ^PSTO12 ^HMICTR12 IEC09000074_1_en.vsd IEC09000074 V1 EN Figure 114: LOCREMCTRL function block 10.3.7.4 Signals...
  • Page 266: Settings

    Section 10 1MRK 511 287-UUS A Control Table 192: LOCREMCTRL Output signals Name Type Description HMICTR1 INTEGER Bitmask output 1 to local remote LHMI input HMICTR2 INTEGER Bitmask output 2 to local remote LHMI input HMICTR3 INTEGER Bitmask output 3 to local remote LHMI input HMICTR4 INTEGER Bitmask output 4 to local remote LHMI input...
  • Page 267: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.3.8.2 Function block SELGGIO SELECT1 RESERVED SELECT2 SELECT3 SELECT4 SELECT5 SELECT6 SELECT7 SELECT8 SELECT9 SELECT10 SELECT11 SELECT12 SELECT13 SELECT14 SELECT15 SELECT16 IEC09000084_1_en.vsd IEC09000084 V1 EN Figure 115: SELGGIO function block 10.3.8.3 Signals Table 193: SELGGIO Input signals Name Type...
  • Page 268: Settings

    Section 10 1MRK 511 287-UUS A Control 10.3.8.4 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 10.3.9 Operation principle 10.3.9.1 Switch controller SCSWI The Switch controller (SCSWI) is provided with verification checks for the select - execute sequence, that is, checks the conditions prior each step of the operation.
  • Page 269 Section 10 1MRK 511 287-UUS A Control In the supervision phase, the switch controller function evaluates the "cause" values from the switch modules Circuit breaker (SXCBR)/ Circuit switch (SXSWI). At error the "cause" value with highest priority is shown. Blocking principles The blocking signals are normally coming from the bay control function (QCBAY) and via the IEC 61850 communication from the operator place.
  • Page 270 Section 10 1MRK 511 287-UUS A Control SCSWI SXCBR EXE_CL CLOSE SYNC_OK START_SY SY_INPRO SESRSYN CLOSECMD Synchro Synchronizing check function ANSI09000209-1-en.vsd ANSI09000209 V1 EN Figure 116: Example of interaction between SCSWI, SESRSYN (25) (synchronism check and synchronizing function) and SXCBR function Time diagrams The Switch controller (SCSWI) function has timers for evaluating different time supervision conditions.
  • Page 271 Section 10 1MRK 511 287-UUS A Control execute command phase A open close phase B open close open phase C close command termination phase A command termination phase B command termination phase C command termination circuit breaker open close t1>tExecutionFB, then tExecutionFB long-operation-time in timer...
  • Page 272: Circuit Breaker Sxcbr

    Section 10 1MRK 511 287-UUS A Control Error handling Depending on the error that occurs during the command sequence, the error signal will be set with a value. Table describes vendor specific cause values in addition to these specified in IEC 61850-8-1 standard. The list of values of the “cause” are in order of priority.
  • Page 273 Section 10 1MRK 511 287-UUS A Control rejected, even trip commands from protection functions are rejected. The functionality of the local/remote switch is described in figure 120. Local= Operation at switch yard level From I/O switchLR Remote= Operation at IED or higher level en05000096.vsd IEC05000096 V1 EN Figure 120:...
  • Page 274 Section 10 1MRK 511 287-UUS A Control It is always possible to make a substitution, independently of the position indication and the status information of the I/O board. When substitution is enabled, the position values are blocked for updating . The substituted values are stored in a non-volatile memory.
  • Page 275 Section 10 1MRK 511 287-UUS A Control OPENPOS CLOSEPOS AdaptivePulse=FALSE EXE_CL tClosePulse AdaptivePulse=TRUE EXE_CL tClosePulse en05000098.vsd IEC05000098 V1 EN Figure 122: Execute output pulse If the pulse is set to be adaptive, it is not possible for the pulse to exceed tOpenPulse or tClosePulse.
  • Page 276 Section 10 1MRK 511 287-UUS A Control OPENPOS CLOSEPOS AdaptivePulse=FALSE EXE_OP tOpenPulse AdaptivePulse=TRUE EXE_OP tOpenPulse tStartMove timer en05000099.vsd IEC05000099 V1 EN Figure 123: Open command with open position indication Error handling Depending on the error that occurs during the command sequence the error signal will be set with a value.
  • Page 277: Circuit Switch Sxswi

    Section 10 1MRK 511 287-UUS A Control 10.3.9.3 Circuit switch SXSWI The users of the Circuit switch (SXSWI) is other functions such as for example, switch controller, protection functions, autorecloser function, or a 61850 client residing in another IED or the operator place. SXSWI executes commands, evaluates block conditions and evaluates different time supervision conditions.
  • Page 278 Section 10 1MRK 511 287-UUS A Control • Block/deblock for open command. It is used to block operation for open command. Note that this block signal also affects the input OPEN for immediate command. • Block/deblock for close command. It is used to block operation for close command. Note that this block signal also affects the input CLOSE for immediate command.
  • Page 279 Section 10 1MRK 511 287-UUS A Control AdaptivePulse = TRUE EXE_CL Close pulse duration OPENPOS CLOSEPOS if t1 > tStartMove then tStartMove timer "switch-not-start-moving" attribute in 'cause' is set tStartMove if t2 > tIntermediate then tIntermediate timer "persisting-intermediate-state" attribute in 'cause' is set tIntermediate en05000097.vsd IEC05000097 V1 EN...
  • Page 280 Section 10 1MRK 511 287-UUS A Control If the pulse is set to be adaptive, it is not possible for the pulse to exceed tOpenPulse or tClosePulse. The execute output pulses are reset when: • the new expected final position is reached and the configuration parameter AdaptivePulse is set to true •...
  • Page 281: Bay Control Qcbay

    Section 10 1MRK 511 287-UUS A Control Error handling Depending on the error that occurs during the command sequence the error signal will be set with a value. Table describes vendor specific cause values in addition to these specified in IEC 61850-8-1 standard. The list of values of the “cause” are in order of priority.
  • Page 282 Section 10 1MRK 511 287-UUS A Control for the local/remote switch is not valid the PSTO output will always be set to faulty state (3), which means no possibility to operate. To adapt the signals from the local HMI or from an external local/remote switch, the function blocks LOCREM and LOCREMCTRL are needed and connected to QCBAY.
  • Page 283: Local Remote/Local Remote Control Locrem/Locremctrl

    Section 10 1MRK 511 287-UUS A Control The switching of the Local/Remote switch requires at least system operator level. The password will be requested at an attempt to operate if authority levels have been defined in the IED. Otherwise the default authority level, SuperUser, can handle the control without LogOn.
  • Page 284: Interlocking

    Section 10 1MRK 511 287-UUS A Control 10.4 Interlocking 10.4.1 Functionality The interlocking functionality blocks the possibility to operate high-voltage switching devices, for instance when a disconnector is under load, in order to prevent material damage and/or accidental human injury. Each control IED has interlocking functions for different switchyard arrangements, each handling the interlocking of one bay.
  • Page 285: Logic Diagram

    Section 10 1MRK 511 287-UUS A Control 10.4.2.4 Logic diagram The function contains logic to enable the open and close commands respectively if the interlocking conditions are fulfilled. That means also, if the switch being controlled has its position defined as open (via POSOPEN) for example, then the appropriate enable signal output (in this case EN_OPEN) is false.
  • Page 286: Settings

    Section 10 1MRK 511 287-UUS A Control 10.4.2.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 10.4.3 Interlocking for busbar grounding switch BB_ES (3) 10.4.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 287: Logic Diagram

    Section 10 1MRK 511 287-UUS A Control 10.4.3.4 Logic diagram BB_ES VP_BB_DC 89GREL BB_DC_OP 89GITL EXDU_BB 89G_OP BBGSOPTR 89G_CL BBGSCLTR en04000546_ansi.vsd ANSI04000546 V1 EN 10.4.3.5 Signals Table 201: BB_ES (3) Input signals Name Type Default Description 89G_OP BOOLEAN Busbar grounding switch 89G is in open position 89G_CL BOOLEAN Busbar grounding switch 89G is in closed position...
  • Page 288: Identification

    Section 10 1MRK 511 287-UUS A Control 10.4.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-section breaker A1A2_BS 10.4.4.2 Functionality The interlocking for bus-section breaker (A1A2_BS ,3) function is used for one bus- section circuit breaker between section 1 and 2 according to figure 133.
  • Page 289: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.4.4.3 Function block A1A2_BS (3) 152_OP 152OPREL 152_CL 152OPITL 189_OP 152CLREL 189_CL 152CLITL 289_OP 189REL 289_CL 189ITL 389G_OP 289REL 389G_CL 289ITL 489G_OP 389GREL 489G_CL 389GITL S189G_OP 489GREL S189G_CL 489GITL S289G_OP S1S2OPTR S289G_CL S1S2CLTR BBTR_OP 189OPTR VP_BBTR...
  • Page 290: Logic Diagram

    Section 10 1MRK 511 287-UUS A Control 10.4.4.4 Logic diagram A1A2_BS 152_OP 152_CL VP152 189_OP 189_CL VP189 289_OP 289_CL VP289 389G_OP 389G_CL VP389G 489G_OP 489G_CL VP489G S1189G_OP S1189G_CL VPS1189G S2289G_OP S2289G_CL VPS2289G VP189 189_OP 152OPREL 152O_EX1 152OPITL VP289 289_OP 152O_EX2 VP_BBTR BBTR_OP EXDU_12...
  • Page 291: Signals

    Section 10 1MRK 511 287-UUS A Control VP152 VP389G 289REL VP489G 289ITL VPS2289G 152_OP 389G_OP 489G_OP S2289G_OP EXDU_89G 289_EX1 VP489G VPS2289G 489G_CL S2289G_CL EXDU_89G 289_EX2 389GREL VP189 VP289 389GITL 189_OP 489GREL 289_OP 489GITL 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR...
  • Page 292 Section 10 1MRK 511 287-UUS A Control Name Type Default Description S289G_CL BOOLEAN S289G on bus section 2 is in closed position BBTR_OP BOOLEAN No busbar transfer is in progress VP_BBTR BOOLEAN Status are valid for apparatuses involved in the busbar transfer EXDU_12 BOOLEAN...
  • Page 293: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description VPS1S2TR BOOLEAN Status of the apparatuses between bus section 1 and 2 are valid VP189TR BOOLEAN Switch status of 189 is valid (open or closed) VP289TR BOOLEAN Switch status of 289 is valid (open or closed) 10.4.4.6 Settings The function does not have any settings available in Local HMI or Protection and Control...
  • Page 294: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.4.5.3 Function block A1A2_DC (3) 089_OP 089OPREL 089_CL 089OPITL S189G_OP 089CLREL S189G_CL 089CLITL S289G_OP DCOPTR S289G_CL DCCLTR S1DC_OP VPDCTR S2DC_OP VPS1_DC VPS2_DC EXDU_89G EXDU_BB 089C_EX1 089C_EX2 089O_EX1 089O_EX2 089O_EX3 ANSI09000067-1-en.vsd ANSI09000067 V1 EN Figure 136: A1A2_DC (3) function block 10.4.5.4...
  • Page 295: Signals

    Section 10 1MRK 511 287-UUS A Control ANSI11000276-1-vsd ANSI11000276 V1 EN 10.4.5.5 Signals Table 205: A1A2_DC (3) Input signals Name Type Default Description 089_OP BOOLEAN 089 is in open position 089_CL BOOLEAN 089 is in closed position S189G_OP BOOLEAN S189G on bus section 1 is in open position S189G_CL BOOLEAN S189G on bus section 1 is in closed position...
  • Page 296: Settings

    Section 10 1MRK 511 287-UUS A Control Table 206: A1A2_DC (3) Output signals Name Type Description 089OPREL BOOLEAN Opening of 089 is allowed 089OPITL BOOLEAN Opening of 089 is not allowed 089CLREL BOOLEAN Closing of 089 is allowed 089CLITL BOOLEAN Closing of 089 is not allowed DCOPTR BOOLEAN...
  • Page 297 Section 10 1MRK 511 287-UUS A Control WA1 (A) WA2 (B) WA7 (C) 2089 189G 289G en04000514_ansi.vsd ANSI04000514 V1 EN Figure 137: Switchyard layout ABC_BC (3) The interlocking functionality in 650 series can not handle the transfer bus WA7(C). Technical manual...
  • Page 298: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.4.6.3 Function block ABC_BC (3) 152_OP 152OPREL 152_CL 152OPITL 189_OP 152CLREL 189_CL 152CLITL 289_OP 189REL 289_CL 189ITL 789_OP 289REL 789_CL 289ITL 2089_OP 789REL 2089_CL 789ITL 189G_OP 2089REL 189G_CL 2089ITL 289G_OP 189GREL 289G_CL 189GITL 1189G_OP 289GREL 1189G_CL...
  • Page 299: Logic Diagram

    Section 10 1MRK 511 287-UUS A Control 10.4.6.4 Logic diagram ABC_BC 152_OP 152_CL VP152 189_OP 189_CL VP189 2089_OP 2089_CL VP2089 789_OP 789_CL VP789 289_OP 289_CL VP289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G 7189G_OP 7189G_CL VP7189G VP189 152OPREL...
  • Page 300 Section 10 1MRK 511 287-UUS A Control VP152 VP189 289REL VP189G 289ITL VP289G VP2189G 152_OP 189_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189 VP_BC_12 189_CL BC_12_CL EXDU_BC 289_EX2 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX3 en04000535_ansi.vsd ANSI04000535 V1 EN VP152 VP2089 789REL VP189G 789ITL VP289G...
  • Page 301: Signals

    Section 10 1MRK 511 287-UUS A Control VP189 189GREL VP2089 189GITL VP789 289GREL VP289 289GITL 189_OP 2089_OP 789_OP 289_OP 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 2089_OP 22089OTR 289_OP 22089CTR VP2089 V22089TR VP289 789_OP 789OPTR 789_CL 789CLTR VP789 VP789TR 189_OP 1289OPTR 289_OP 1289CLTR VP189...
  • Page 302 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL BOOLEAN 289G is in closed position 1189G_OP BOOLEAN Grounding switch 1189G on busbar WA1 is in open position 1189G_CL BOOLEAN...
  • Page 303 Section 10 1MRK 511 287-UUS A Control Table 208: ABC_BC (3) Output signals Name Type Description 152OPREL BOOLEAN Opening of 152 is allowed 152OPITL BOOLEAN Opening of 152 is not allowed 152CLREL BOOLEAN Closing of 152 is allowed 152CLITL BOOLEAN Closing of 152 is not allowed 189REL BOOLEAN...
  • Page 304: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description V22089TR BOOLEAN Switch status of 289 and 2089 are valid (open or closed) VP789TR BOOLEAN Switch status of 789 is valid (open or closed) VP1289TR BOOLEAN Switch status of 189 and 289 are valid (open or closed) VPBC12TR BOOLEAN Status of bus coupler apparatuses between bus1 and...
  • Page 305 Section 10 1MRK 511 287-UUS A Control WA1 (A) WA2 (B) 189G 189G 289G 289G 389G 389G BH_LINE_B BH_LINE_A 6189 6289 289G 189G 989G 989G BH_CONN en04000513_ansi.vsd ANSI04000513 V1 EN Figure 139: Switchyard layout breaker-and-a-half Three types of interlocking modules per diameter are defined. BH_LINE_A (3) and BH_LINE_B (3) are the connections from a line to a busbar.
  • Page 306: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.4.7.3 Function block BH_CONN (3) 152_OP 152CLREL 152_CL 152CLITL 6189_OP 6189REL 6189_CL 6189ITL 6289_OP 6289REL 6289_CL 6289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 1389G_OP 1389G_CL 2389G_OP 2389G_CL 6189_EX1 6189_EX2 6289_EX1 6289_EX2 ANSI09000072-1-en.vsd ANSI09000072 V1 EN Figure 140:...
  • Page 307 Section 10 1MRK 511 287-UUS A Control BH_LINE_A (3) 152_OP 152CLREL 152_CL 152CLITL 689_OP 689REL 689_CL 689ITL 189_OP 189REL 189_CL 189ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 389GREL 389G_CL 389GITL 989_OP 989REL 989_CL 989ITL 989G_OP 989GREL 989G_CL 989GITL C152_OP 189OPTR...
  • Page 308 Section 10 1MRK 511 287-UUS A Control BH_LINE_B (3) 152_OP 152CLREL 152_CL 152CLITL 689_OP 689REL 689_CL 689ITL 289_OP 289REL 289_CL 289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 389GREL 389G_CL 389GITL 989_OP 989REL 989_CL 989ITL 989G_OP 989GREL 989G_CL 989GITL C152_OP 289OPTR...
  • Page 309: Logic Diagrams

    Section 10 1MRK 511 287-UUS A Control 10.4.7.4 Logic diagrams BH_CONN 152_OP 152_CL VP152 6189_OP 6189_CL VP6189 6289_OP 6289_CL VP6289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 1389G_OP 1389G_CL VP1389G 2389G_OP 2389G_CL VP2389G VP6189 152CLREL VP6289 152CLITL VP152 VP189G 6189REL VP289G 61891ITL VP1389G 152_OP...
  • Page 310 Section 10 1MRK 511 287-UUS A Control BH_LINE_A 152_OP 152_CL VP152 189_OP 189_CL VP189 689_OP 689_CL VP689 989G_OP 989G_CL VP989G 989_OP 989_CL VP989 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G C152_OP C152_CL VPC152 C189G_OP C189G_CL VPC189G C289G_OP C289G_CL VPC289G C6189_OP C6189_CL...
  • Page 311 Section 10 1MRK 511 287-UUS A Control VP152 VP189G 189REL VP289G 189ITL VP1189G 152_OP 189G_OP 289G_OP 1189G_OP EXDU_89G 189_EX1 VP189G VP1189G 189G_CL 1189G_CL EXDU_89G 189_EX2 VP189 189GREL VP689 189GITL 189_OP 289GREL 689_OP 289GITL VP689 VP989 389GREL VPC6189 389GITL 689_OP 989_OP C6189_OP VP152 989REL...
  • Page 312 Section 10 1MRK 511 287-UUS A Control BH_LINE_B 152_OP 152_CL VP152 289_OP 289_CL VP289 689_OP 689_CL VP689 989G_OP VP989G 989G_CL 989_OP 989_CL VP989 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G C152_OP VPC152 C152_CL C189G_OP C189G_CL VPC189G C289G_OP C289G_CL VPC289G C6289_OP C6289_CL...
  • Page 313 Section 10 1MRK 511 287-UUS A Control VP152 VP189G 289REL VP289G 289ITL VP2189G 152_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX2 VP289 189GREL VP689 189GITL 289_OP 289GREL 689_OP 289GITL VP689 VP989 389GREL VPC6289 389GITL 689_OP 989_OP C6289_OP VP152 989REL...
  • Page 314: Signals

    Section 10 1MRK 511 287-UUS A Control 10.4.7.5 Signals Table 209: BH_CONN (3) Input signals Name Type Default Description 152_OP BOOLEAN 152 is in open position 152_CL BOOLEAN 152 is in closed position 6189_OP BOOLEAN 6189 is in open position 6189_CL BOOLEAN 6189 is in closed position...
  • Page 315 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 989_OP BOOLEAN 989 is in open position 989_CL BOOLEAN 989 is in closed position 989G_OP BOOLEAN 989G is in open position 989G_CL BOOLEAN 989G is in closed position C152_OP BOOLEAN 152 in module BH_CONN is in open position C152_CL...
  • Page 316 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 689_CL BOOLEAN 689 is in closed position 289_OP BOOLEAN 289 is in open position 289_CL BOOLEAN 289 is in closed position 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP...
  • Page 317 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 989_EX5 BOOLEAN External condition for apparatus 989 989_EX6 BOOLEAN External condition for apparatus 989 989_EX7 BOOLEAN External condition for apparatus 989 Table 212: BH_CONN (3) Output signals Name Type Description 152CLREL BOOLEAN...
  • Page 318: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description 189OPTR BOOLEAN 189 is in open position 189CLTR BOOLEAN 189 is in closed position VP189TR BOOLEAN Switch status of 189 is valid (open or closed) Table 214: BH_LINE_B (3) Output signals Name Type Description...
  • Page 319: Identification

    Section 10 1MRK 511 287-UUS A Control 10.4.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for double CB bay DB_BUS_A Interlocking for double CB bay DB_BUS_B Interlocking for double CB bay DB_LINE 10.4.8.2 Functionality The interlocking for a double busbar double circuit breaker bay including DB_BUS_A (3), DB_BUS_B (3) and DB_LINE (3) functions are used for a line connected to a double...
  • Page 320: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.4.8.3 Function block DB_BUS_A (3) 152_OP 152CLREL 152_CL 152CLITL 189_OP 6189REL 189_CL 6189ITL 6189_OP 189REL 6189_CL 189ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 189OPTR 389G_CL 189CLTR 1189G_OP VP189TR 1189G_CL EXDU_89G 6189_EX1 6189_EX2 189_EX1...
  • Page 321 Section 10 1MRK 511 287-UUS A Control DB_LINE (3) 152_OP 989REL 152_CL 989ITL 252_OP 389GREL 252_CL 389GITL 6189_OP 989GREL 6189_CL 989GITL 189G_OP 189G_CL 289G_OP 289G_CL 6289_OP 6289_CL 489G_OP 489G_CL 589G_OP 589G_CL 989_OP 989_CL 389G_OP 389G_CL 989G_OP 989G_CL VOLT_OFF VOLT_ON 989_EX1 989_EX2 989_EX3 989_EX4...
  • Page 322: Logic Diagrams

    Section 10 1MRK 511 287-UUS A Control 10.4.8.4 Logic diagrams DB_BUS_A 152_OP 152_CL VP152 6189_OP 6189_CL VP6189 189_OP 189_CL VP189 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G 1189G_OP 1189G_CL VP1189G VP6189 152CLREL VP189 152CLITL VP152 VP189G 6189REL VP289G 6189ITL VP389G 152_OP...
  • Page 323 Section 10 1MRK 511 287-UUS A Control DB_BUS_B 252_OP 252_CL VP252 6289_OP 6289_CL VP6289 289_OP 289_CL VP289 489G_OP 489G_CL VP489G 589G_OP 589G_CL VP589G 389G_OP 389G_CL VP389G 2189G_OP 2189G_CL VP2189G VP6289 252CLREL VP289 252CLITL VP252 VP489G 6289REL VP589G 6289ITL VP389G 252_OP 489G_OP 589G_OP 389G_OP...
  • Page 324 Section 10 1MRK 511 287-UUS A Control DB_LINE 152_OP 152_CL VP152 252_OP 252_CL VP252 6189_OP 6189_CL VP6189 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 6289_OP 6289_CL VP6289 489G_OP 489G_CL VP489G 589G_OP 589G_CL VP589G 989_OP 989_CL VP989 389G_OP 389G_CL VP389G 989G_OP 989G_CL VP989G VOLT_OFF VOLT_ON...
  • Page 325: Signals

    Section 10 1MRK 511 287-UUS A Control VP152 VP189G VP289G VP389G VP989G VP6289 152_OP 189G_OP 289G_OP 389G_OP 989G_OP 6289_OP 989_EX2 VP252 VP6189 VP389G VP489G VP589G VP989G 252_OP 6189_OP 389G_OP 489G_OP 589G_OP 989G_OP 989_EX3 VP389G VP989G VP6189 VP6289 389G_OP 989G_OP 6189_OP 6289_OP 989_EX4 VP389G...
  • Page 326 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 6189_OP BOOLEAN 6189 is in open position 6189_CL BOOLEAN 6189 is in closed position 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL...
  • Page 327 Section 10 1MRK 511 287-UUS A Control Name Type Default Description EXDU_89G BOOLEAN No transmission error from bay containing grounding switch QC21 6289_EX1 BOOLEAN External condition for apparatus 6289 6289_EX2 BOOLEAN External condition for apparatus 6289 289_EX1 BOOLEAN External condition for apparatus 289 289_EX2 BOOLEAN External condition for apparatus 289...
  • Page 328 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 989_EX3 BOOLEAN External condition for apparatus 989 989_EX4 BOOLEAN External condition for apparatus 989 989_EX5 BOOLEAN External condition for apparatus 989 Table 218: DB_BUS_A (3) Output signals Name Type Description 152CLREL BOOLEAN...
  • Page 329: Settings

    Section 10 1MRK 511 287-UUS A Control Table 220: DB_LINE (3) Output signals Name Type Description 989REL BOOLEAN Switching of 989 is allowed 989ITL BOOLEAN Switching of 989 is not allowed 389GREL BOOLEAN Switching of 389G is allowed 389GITL BOOLEAN Switching of 389G is not allowed 989GREL BOOLEAN...
  • Page 330 Section 10 1MRK 511 287-UUS A Control WA1 (A) WA2 (B) WA7 (C) 189G 289G 989G en04000478_ansi.vsd ANSI04000478 V1 EN Figure 147: Switchyard layout ABC_LINE (3) The interlocking functionality in 650 series can not handle the transfer bus WA7(C). Technical manual...
  • Page 331: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.4.9.3 Function block ABC_LINE (3) 152_OP 152CLREL 152_CL 152CLITL 989_OP 989REL 989_CL 989ITL 189_OP 189REL 189_CL 189ITL 289_OP 289REL 289_CL 289ITL 789_OP 789REL 789_CL 789ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 989G_OP 989GREL 989G_CL...
  • Page 332: Logic Diagram

    Section 10 1MRK 511 287-UUS A Control 10.4.9.4 Logic diagram ABC_LINE 152_OP 152_CL VP152 989_OP VP989 989_CL 152CLREL 189_OP 152CLITL 189_CL VP189 289_OP 289_CL VP289 789_OP 789_CL VP789 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 989G_OP 989G_CL VP989G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G...
  • Page 333 Section 10 1MRK 511 287-UUS A Control 189REL VP152 VP289 VP189G 189ITL VP289G VP1189G 152_OP 289_OP 189G_OP 289G_OP 1189G_OP EXDU_89G 189_EX1 VP289 VP_BC_12 289_CL BC_12_CL EXDU_BC 189_EX2 VP189G VP1189G 189G_CL 1189G_CL EXDU_89G 189EX3 en04000528_ansi.vsd ANSI04000528 V1 EN Technical manual...
  • Page 334 Section 10 1MRK 511 287-UUS A Control 289REL VP152 VP189 VP189G 289ITL VP289G VP2189G 152_OP 189_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189 VP_BC_12 QB1_CL BC_12_CL EXDU_BC 289_EX2 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX3 en04000529_ansi.vsd ANSI04000529 V1 EN Technical manual...
  • Page 335 Section 10 1MRK 511 287-UUS A Control VP989G 789REL VP7189G VP_BB7_D 789ITL VP_BC_17 VP_BC_27 989G_OP 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_17_OP BC_27_OP EXDU_BC 789_EX1 VP152 VP189 VP989G VP989 VP7189G VP_BB7_D VP_BC_17 152_CL 189_CL 989G_OP 989_CL 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_17_CL EXDU_BC 789_EX2 en04000530_ansi.vsd ANSI04000530 V1 EN...
  • Page 336 Section 10 1MRK 511 287-UUS A Control VP152 VP289 VP989G VP989 VP7189G VP_BB7_D VP_BC_27 152_CL 289_CL 989G_OP 989_CL 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_27_CL EXDU_BC 789_EX3 VP989G VP7189G 989G_CL 7189G_CL EXDU_89G 789_EX4 VP189 189GREL VP289 189GITL VP989 289GREL 189_OP 289GITL 289_OP 989_OP VP789 VP989...
  • Page 337: Signals

    Section 10 1MRK 511 287-UUS A Control 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR VP289 VP289TR 789_OP 789OPTR 789_CL 789CLTR VP789 VP789TR 189_OP 1289OPTR 289_OP 1289CLTR VP189 VP1289TR VP289 en04000532_ansi.vsd ANSI04000532 V1 EN 10.4.9.5 Signals Table 221: ABC_LINE (3) Input signals Name Type...
  • Page 338 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 1189G_OP BOOLEAN Grounding switch 1189G on busbar WA1 is in open position 1189G_CL BOOLEAN Grounding switch 1189G on busbar WA1 is in closed position 2189G_OP BOOLEAN Grounding switch 2189G on busbar WA2 is in open position 2189G_CL BOOLEAN...
  • Page 339 Section 10 1MRK 511 287-UUS A Control Name Type Default Description 189_EX3 BOOLEAN External condition for apparatus 189 289_EX1 BOOLEAN External condition for apparatus 289 289_EX2 BOOLEAN External condition for apparatus 289 289_EX3 BOOLEAN External condition for apparatus 289 789_EX1 BOOLEAN External condition for apparatus 789 789_EX2...
  • Page 340: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description VP289TR BOOLEAN Switch status of 289 is valid (open or closed) VP789TR BOOLEAN Switch status of 789 is valid (open or closed) VP1289TR BOOLEAN Switch status of 189 and 289 are valid (open or closed) 10.4.9.6 Settings The function does not have any settings available in Local HMI or Protection and Control...
  • Page 341 Section 10 1MRK 511 287-UUS A Control WA1 (A) WA2 (B) 189G AB_TRAFO 289G 389G 252 and 489G are not used in this interlocking 489G en04000515_ansi.vsd ANSI04000515 V1 EN Figure 149: Switchyard layout AB_TRAFO (3) Technical manual...
  • Page 342: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.4.10.3 Function block AB_TRAFO (3) 152_OP 152CLREL 152_CL 152CLITL 189_OP 189REL 189_CL 189ITL 289_OP 289REL 289_CL 289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389_OP 189OPTR 389_CL 189CLTR 489_OP 289OPTR 489_CL 289CLTR 389G_OP 1289OPTR 389G_CL...
  • Page 343: Logic Diagram

    Section 10 1MRK 511 287-UUS A Control 10.4.10.4 Logic diagram AB_TRAFO 152_OP 152_CL VP152 189_OP 189_CL VP189 289_OP 289_CL VP289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389_OP 389_CL VP389 489_OP 489_CL VP489 389G_OP 389G_CL VP389G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G VP189 152CLREL...
  • Page 344 Section 10 1MRK 511 287-UUS A Control VP152 VP289 189REL VP189G 189ITL VP289G VP389G VP1189G 152_OP 289_OP 189G_OP 289G_OP 389G_OP 1189G_OP EXDU_89G 189_EX1 VP289 VP389G VP_BC_12 289_CL 389G_OP BC_12_CL EXDU_BC 189_EX2 VP189G VP289G VP389G VP1189G 189G_CL 289G_CL 389G_CL 1189G_CL EXDU_89G 189_EX3 en04000539_ansi.vsd ANSI04000539 V1 EN...
  • Page 345: Signals

    Section 10 1MRK 511 287-UUS A Control 189GREL VP189 VP289 189GITL VP389 289GREL VP489 289GITL 189_OP 289_OP 389_OP 489_OP 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR VP289TR VP289 189_OP 1289OPTR 289_OP 1289CLTR VP189 VP1289TR VP289 en04000541_ansi.vsd ANSI04000541 V1 EN 10.4.10.5 Signals Table 223:...
  • Page 346 Section 10 1MRK 511 287-UUS A Control Name Type Default Description VP_BC_12 BOOLEAN Status of bus coupler apparatuses between bus1 and bus 2 are valid. EXDU_89G BOOLEAN No transmission error from any bay containing grounding switches EXDU_BC BOOLEAN No transmission error from any bus coupler bay 152_EX1 BOOLEAN External condition for breaker 152...
  • Page 347: Settings

    Section 10 1MRK 511 287-UUS A Control 10.4.10.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 10.4.11 Position evaluation POS_EVAL 10.4.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 348: Signals

    Section 10 1MRK 511 287-UUS A Control Input position (Value) Signal quality Output OPENPOS Output CLOSEPOS 0 (Breaker intermediate) Good 1 (Breaker open) Good 2 (Breaker closed) Good 3 (Breaker faulty) Good Invalid Oscillatory 10.4.11.5 Signals Table 225: POS_EVAL Input signals Name Type Default...
  • Page 349 Section 10 1MRK 511 287-UUS A Control The open or closed positions of the HV apparatuses are inputs to software modules distributed in the control IEDs. Each module contains the interlocking logic for a bay. The interlocking logic in a module is different, depending on the bay function and the switchyard arrangements, that is, double-breaker or breaker-and-a-half bays have different modules.
  • Page 350 Section 10 1MRK 511 287-UUS A Control Station bus Bay 1 Bay n Bus coupler Disc 189 and 289 closed Disc 189 and 289 closed WA1 ungrounded WA1 ungrounded WA1 and WA2 interconn WA1 not grounded . . . WA1 not grounded WA2 not grounded WA2 not grounded WA1 and WA2 interconn...
  • Page 351: Logic Rotating Switch For Function Selection And Lhmi Presentation Slggio

    Section 10 1MRK 511 287-UUS A Control or if the disconnectors operate in parallel to other closed connections, or if they are grounding on both sides. • Circuit breaker closing is only interlocked against running disconnectors in its bay or additionally in a transformer bay against the disconnectors and grounding switch on the other side of the transformer, if there is no disconnector between CB and transformer.
  • Page 352: Functionality

    Section 10 1MRK 511 287-UUS A Control 10.5.2 Functionality The logic rotating switch for function selection and LHMI presentation SLGGIO (or the selector switch function block) is used to get an enhanced selector switch functionality compared to the one provided by a hardware selector switch. Hardware selector switches are used extensively by utilities, in order to have different functions operating on pre-set values.
  • Page 353 Section 10 1MRK 511 287-UUS A Control Table 228: SLGGIO Output signals Name Type Description BOOLEAN Selector switch position 1 BOOLEAN Selector switch position 2 BOOLEAN Selector switch position 3 BOOLEAN Selector switch position 4 BOOLEAN Selector switch position 5 BOOLEAN Selector switch position 6 BOOLEAN...
  • Page 354: Settings

    Section 10 1MRK 511 287-UUS A Control 10.5.5 Settings Table 229: SLGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled NrPos 2 - 32 Number of positions in the switch OutType Pulsed Steady Output type, steady or pulse...
  • Page 355: Selector Mini Switch Vsggio

    Section 10 1MRK 511 287-UUS A Control PSTO input. If any operation is allowed the signal INTONE from the Fixed signal function block can be connected. SLGGIO function block has also an integer value output, that generates the actual position number. The positions and the block names are fully settable by the user.
  • Page 356: Settings

    Section 10 1MRK 511 287-UUS A Control Table 232: VSGGIO Output signals Name Type Description BLOCKED BOOLEAN The function is active but the functionality is blocked POSITION INTEGER Position indication, integer POS1 BOOLEAN Position 1 indication, logical signal POS2 BOOLEAN Position 2 indication, logical signal CMDPOS12 BOOLEAN...
  • Page 357: Iec 61850 Generic Communication I/O Functions Dpggio

    Section 10 1MRK 511 287-UUS A Control It is important for indication in the SLD that the a symbol is associated with a controllable object, otherwise the symbol won't be displayed on the screen. A symbol is created and configured in GDE tool in PCM600. The PSTO input is connected to the Local remote switch to have a selection of operators place, operation from local HMI (Local) or through IEC 61850 (Remote).
  • Page 358: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.7.3 Function block DPGGIO OPEN POSITION CLOSE VALID IEC09000075_1_en.vsd IEC09000075 V1 EN Figure 155: DPGGIO function block 10.7.4 Signals Table 234: DPGGIO Input signals Name Type Default Description OPEN BOOLEAN Open indication CLOSE BOOLEAN Close indication VALID...
  • Page 359: Single Point Generic Control 8 Signals Spc8Ggio

    Section 10 1MRK 511 287-UUS A Control 10.8 Single point generic control 8 signals SPC8GGIO 10.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Single point generic control 8 signals SPC8GGIO 10.8.2 Functionality The Single point generic control 8 signals SPC8GGIO function block is a collection of 8 single point commands, designed to bring in commands from REMOTE (SCADA) to those parts of the logic configuration that do not need extensive command receiving functionality (for example, SCSWI).
  • Page 360: Settings

    Section 10 1MRK 511 287-UUS A Control Table 237: SPC8GGIO Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8...
  • Page 361: Operation Principle

    Section 10 1MRK 511 287-UUS A Control 10.8.6 Operation principle The PSTO input selects the operator place (LOCAL, REMOTE or ALL). One of the eight outputs is activated based on the command sent from the operator place selected. The settings Latchedx and tPulsex (where x is the respective output) will determine if the signal will be pulsed (and how long the pulse is) or latched (steady).
  • Page 362: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.9.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 363: Settings

    Section 10 1MRK 511 287-UUS A Control Name Type Description CMDBIT4 BOOLEAN Command out bit 4 CMDBIT5 BOOLEAN Command out bit 5 CMDBIT6 BOOLEAN Command out bit 6 CMDBIT7 BOOLEAN Command out bit 7 CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9...
  • Page 364: Operation Principle

    Section 10 1MRK 511 287-UUS A Control 10.9.6 Operation principle Automation bits function (AUTOBITS) has 32 individual outputs which each can be mapped as a Binary Output point in DNP3. The output is operated by a "Object 12" in DNP3. This object contains parameters for control-code, count, on-time and off-time. To operate an AUTOBITS output point, send a control-code of latch-On, latch-Off, pulse- On, pulse-Off, Trip or Close.
  • Page 365: Signals

    Section 10 1MRK 511 287-UUS A Control 10.10.3 Signals Table 242: I103CMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 243: I103CMD Output signals Name Type Description 16-AR BOOLEAN Information number 16 disable/enable autorecloser 17-DIFF BOOLEAN Information number 17, block of differential protection 18-PROT BOOLEAN...
  • Page 366: Signals

    Section 10 1MRK 511 287-UUS A Control 10.11.3 Signals Table 245: I103IEDCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 246: I103IEDCMD Output signals Name Type Description 19-LEDRS BOOLEAN Information number 19, reset LEDs 23-GRP1 BOOLEAN Information number 23, activate setting group 1 24-GRP2 BOOLEAN...
  • Page 367: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.12.2 Function block I103USRCMD BLOCK ^OUTPUT1 ^OUTPUT2 ^OUTPUT3 ^OUTPUT4 ^OUTPUT5 ^OUTPUT6 ^OUTPUT7 ^OUTPUT8 IEC10000284-1-en.vsd IEC10000284 V1 EN Figure 160: I103USRCMD function block 10.12.3 Signals Table 248: I103USRCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands...
  • Page 368: Function Commands Generic For Iec 60870-5-103 I103Gencmd

    Section 10 1MRK 511 287-UUS A Control Name Values (Range) Unit Step Default Description InfNo_2 1 - 255 Information number for output 2 (1-255) InfNo_3 1 - 255 Information number for output 3 (1-255) InfNo_4 1 - 255 Information number for output 4 (1-255) InfNo_5 1 - 255 Information number for output 5 (1-255)
  • Page 369: Signals

    Section 10 1MRK 511 287-UUS A Control 10.13.3 Signals Table 251: I103GENCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command Table 252: I103GENCMD Output signals Name Type Description CMD_OFF BOOLEAN Command output OFF CMD_ON BOOLEAN Command output ON 10.13.4 Settings Table 253:...
  • Page 370: Function Block

    Section 10 1MRK 511 287-UUS A Control 10.14.2 Function block I103POSCMD BLOCK POSITION SELECT IEC10000286-1-en.vsd IEC10000286 V1 EN Figure 162: I103POSCMD function block 10.14.3 Signals Table 254: I103POSCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command POSITION INTEGER Position of controllable object SELECT...
  • Page 371: Tripping Logic Common 3-Phase Output Smpptrc (94)

    Section 11 1MRK 511 287-UUS A Logic Section 11 Logic 11.1 Tripping logic common 3-phase output SMPPTRC (94) 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 11.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved in...
  • Page 372: Signals

    Section 11 1MRK 511 287-UUS A Logic 11.1.4 Signals Table 256: SMPPTRC (94) Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRINP_3P BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 257:...
  • Page 373: Technical Data

    Section 11 1MRK 511 287-UUS A Logic routed. It has a single trip output (TRIP) for connection to one or more of the IEDs binary outputs, as well as to other functions within the IED requiring this signal. ANSI05000789 V2 EN Figure 164: Simplified logic diagram for three pole trip In multi-breaker arrangements, one SMPPTRC (94) function block is used for each...
  • Page 374: Functionality

    Section 11 1MRK 511 287-UUS A Logic 11.2.2 Functionality The 12 Trip matrix logic TMAGGIO function each with 32 inputs are used to route trip signals and other logical output signals to the tripping logics SMPPTRC and SPTPTRC or to different output contacts on the IED. TMAGGIO 3 output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs for settable pulse or steady output.
  • Page 375: Signals

    Section 11 1MRK 511 287-UUS A Logic 11.2.4 Signals Table 261: TMAGGIO Input signals Name Type Default Description INPUT1 BOOLEAN Binary input 1 INPUT2 BOOLEAN Binary input 2 INPUT3 BOOLEAN Binary input 3 INPUT4 BOOLEAN Binary input 4 INPUT5 BOOLEAN Binary input 5 INPUT6 BOOLEAN...
  • Page 376: Settings

    Section 11 1MRK 511 287-UUS A Logic Table 262: TMAGGIO Output signals Name Type Description OUTPUT1 BOOLEAN OR function betweeen inputs 1 to 16 OUTPUT2 BOOLEAN OR function between inputs 17 to 32 OUTPUT3 BOOLEAN OR function between inputs 1 to 32 11.2.5 Settings Table 263:...
  • Page 377 Section 11 1MRK 511 287-UUS A Logic by OffDelay or if it shall give a pulse with duration set by PulseTime. Note that for pulsed operation and that the inputs are connected in an OR-function, a new pulse will only be given on the output if all related inputs are reset and then one is activated again.
  • Page 378 Section 11 1MRK 511 287-UUS A Logic 11.3 Configurable logic blocks 11.3.1 Standard configurable logic blocks 11.3.1.1 Functionality A number of logic blocks and timers are available for the user to adapt the configuration to the specific application needs. • OR function block.
  • Page 379 Section 11 1MRK 511 287-UUS A Logic power interruption. The RESET input has priority if both SET and RESET are operated simultaneously. Configurable logic Q/T A number of logic blocks and timers, with the capability to propagate timestamp and quality of the input signals, are available. The function blocks assist the user to adapt the IEDs configuration to the specific application needs.
  • Page 380 Section 11 1MRK 511 287-UUS A Logic • INVALIDQT function which sets quality invalid of outputs according to a "valid" input. Inputs are copied to outputs. If input VALID is 0, or if its quality invalid bit is set, all outputs invalid quality bit will be set to invalid. The timestamp of an output will be set to the latest timestamp of INPUT and VALID inputs.
  • Page 381 Section 11 1MRK 511 287-UUS A Logic Signals Table 264: OR Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 INPUT5 BOOLEAN Input signal 5 INPUT6 BOOLEAN Input signal 6...
  • Page 382 Section 11 1MRK 511 287-UUS A Logic Signals Table 266: INVERTER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 267: INVERTER Output signals Name Type Description BOOLEAN Output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 383 Section 11 1MRK 511 287-UUS A Logic Table 269: PULSETIMER Output signals Name Type Description BOOLEAN Output signal Settings Table 270: PULSETIMER Non group settings (basic) Name Values (Range) Unit Step Default Description 0.000 - 90000.000 0.001 0.010 Pulse time length 11.3.1.5 Controllable gate function block GATE Identification...
  • Page 384 Section 11 1MRK 511 287-UUS A Logic Settings Table 273: GATE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 11.3.1.6 Exclusive OR function block XOR Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 385 Section 11 1MRK 511 287-UUS A Logic Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 11.3.1.7 Loop delay function block LOOPDELAY Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 386 Section 11 1MRK 511 287-UUS A Logic 11.3.1.8 Timer function block TIMERSET Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Timer function block TIMERSET Functionality The function block TIMERSET has pick-up and drop-out delayed outputs related to the input signal.
  • Page 387 Section 11 1MRK 511 287-UUS A Logic Table 279: TIMERSET Output signals Name Type Description BOOLEAN Output signal, pick-up delayed BOOLEAN Output signal, drop-out delayed Settings Table 280: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled...
  • Page 388 Section 11 1MRK 511 287-UUS A Logic Signals Table 281: AND Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 Table 282: AND Output signals Name Type Description...
  • Page 389 Section 11 1MRK 511 287-UUS A Logic Function block SRMEMORY RESET NOUT IEC09000293-1-en.vsd IEC09000293 V1 EN Figure 176: SRMEMORY function block Signals Table 284: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 285: SRMEMORY Output signals Name...
  • Page 390 Section 11 1MRK 511 287-UUS A Logic after a power interruption will return the state it had before or if it will be reset. For a Reset- Set flip-flop, RESET input has higher priority over SET input. Table 287: Truth table for RSMEMORY function block RESET NOUT Last...
  • Page 391 Section 11 1MRK 511 287-UUS A Logic 11.3.2 Configurable logic Q/T 11.3.2.1 Functionality A number of logic blocks and timers with the capability to propagate timestamp and quality of the input signals are available. The function blocks assist the user to adapt the IEDs configuration to the specific application needs.
  • Page 392 Section 11 1MRK 511 287-UUS A Logic Table 292: ORQT Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 11.3.2.3 INVERTERQT function block Identification...
  • Page 393 Section 11 1MRK 511 287-UUS A Logic 11.3.2.4 Pulse timer function block PULSTIMERQT Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse timer function block PULSTIMERQT Functionality Pulse timer function block (PULSETIMERQT) can be used, for example, for pulse extensions or limiting of operation of outputs.
  • Page 394 Section 11 1MRK 511 287-UUS A Logic Settings Table 297: PULSETIMERQT Non group settings (basic) Name Values (Range) Unit Step Default Description 0.000 - 90000.000 0.001 0.010 Pulse time length 11.3.2.5 XORQT function block Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 395 Section 11 1MRK 511 287-UUS A Logic Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 11.3.2.6 Settable timer function block TIMERSETQT Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 396 Section 11 1MRK 511 287-UUS A Logic Signals Table 300: TIMERSETQT Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 301: TIMERSETQT Output signals Name Type Description BOOLEAN Output signal, pick-up delayed BOOLEAN Output signal, drop-out delayed Settings Table 302: TIMERSETQT Group settings (basic) Name...
  • Page 397 Section 11 1MRK 511 287-UUS A Logic Function block ANDQT INPUT1 INPUT2 NOUT INPUT3 INPUT4 IEC09000297-1-en.vsd IEC09000297 V1 EN Figure 184: ANDQT function block Signals Table 303: ANDQT Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3...
  • Page 398 Section 11 1MRK 511 287-UUS A Logic outputs, where one is inverted. The memory setting controls if the flip-flop after a power interruption will return the state it had before or if it will be reset. SRMEMORYQT propagates quality and time as well as value. Table 305: Truth table for SRMEMORYQT function block RESET...
  • Page 399 Section 11 1MRK 511 287-UUS A Logic Settings Table 308: SRMEMORYQT Group settings (basic) Name Values (Range) Unit Step Default Description Memory Operating mode of the memory function 11.3.2.9 Reset-set function block RSMEMORYQT Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 400 Section 11 1MRK 511 287-UUS A Logic Signals Table 310: RSMEMORYQT Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 311: RSMEMORYQT Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings...
  • Page 401 Section 11 1MRK 511 287-UUS A Logic Function block INVALIDQT INPUT1 OUTPUT1 INPUT2 OUTPUT2 INPUT3 OUTPUT3 INPUT4 OUTPUT4 INPUT5 OUTPUT5 INPUT6 OUTPUT6 INPUT7 OUTPUT7 INPUT8 OUTPUT8 INPUT9 OUTPUT9 INPUT10 OUTPUT10 INPUT11 OUTPUT11 INPUT12 OUTPUT12 INPUT13 OUTPUT13 INPUT14 OUTPUT14 INPUT15 OUTPUT15 INPUT16 OUTPUT16 VALID...
  • Page 402: Indication Combining Single Position Function Block Indcombspqt

    Section 11 1MRK 511 287-UUS A Logic Name Type Default Description INPUT14 BOOLEAN Indication input 14 INPUT15 BOOLEAN Indication input 15 INPUT16 BOOLEAN Indication input 16 VALID BOOLEAN Inputs are valid or invalid Table 314: INVALIDQT Output signals Name Type Description OUTPUT1 BOOLEAN...
  • Page 403 Section 11 1MRK 511 287-UUS A Logic Functionality Single position input is copied to value part of SP_OUT output. TIME input is copied to time part of SP_OUT output. State input bits are copied to the corresponding state part of SP_OUT output.
  • Page 404 Section 11 1MRK 511 287-UUS A Logic 11.3.2.12 Indication extractor single position function block INDEXTSPQT Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Single indication signal extractor INDEXTSPQT function block Functionality Value part of single position input is copied to SI_OUT output. Time part of single position input is copied to TIME output.
  • Page 405 Section 11 1MRK 511 287-UUS A Logic Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 11.3.3 Technical data Table 319: Configurable logic blocks Logic block Quantity Range or value Accuracy with cycle time...
  • Page 406 Section 11 1MRK 511 287-UUS A Logic 11.4 Fixed signals FXDSIGN 11.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 11.4.2 Functionality The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 407: Settings

    Section 11 1MRK 511 287-UUS A Logic Name Type Description STRNULL STRING String signal with no characters ZEROSMPL GROUP SIGNAL Channel id for zero sample GRP_OFF GROUP SIGNAL Group signal fixed off 11.4.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 408: Function Block

    Section 11 1MRK 511 287-UUS A Logic 11.5.3 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000035-1-en.vsd IEC09000035 V1 EN Figure 191: B16I function block 11.5.4 Signals Table 322: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 409: Settings

    Section 11 1MRK 511 287-UUS A Logic Table 323: B16I Output signals Name Type Description INTEGER Output value 11.5.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.5.6 Monitored data Table 324: B16I Monitored data Name...
  • Page 410: Boolean 16 To Integer Conversion With Logic Node Representation B16Ifcvi

    Section 11 1MRK 511 287-UUS A Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 7 BOOLEAN Input 8 BOOLEAN Input 9 IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12 2048 IN13 BOOLEAN...
  • Page 411: Function Block

    Section 11 1MRK 511 287-UUS A Logic 11.6.3 Function block B16IFCVI BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000624-1-en.vsd IEC09000624 V1 EN Figure 192: B16IFCVI function block 11.6.4 Signals Table 325: B16IFCVI Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 412: Settings

    Section 11 1MRK 511 287-UUS A Logic Table 326: B16IFCVI Output signals Name Type Description INTEGER Output value 11.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.6.6 Monitored data Table 327: B16IFCVI Monitored data Name...
  • Page 413: Integer To Boolean 16 Conversion Ib16A

    Section 11 1MRK 511 287-UUS A Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 6 BOOLEAN Input 7 BOOLEAN Input 8 BOOLEAN Input 9 IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12...
  • Page 414: Function Block

    Section 11 1MRK 511 287-UUS A Logic 11.7.3 Function block IB16A BLOCK OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 OUT12 OUT13 OUT14 OUT15 OUT16 IEC09000036-1-en.vsd IEC09000036 V1 EN Figure 193: IB16A function block 11.7.4 Signals Table 328: IB16A Input signals Name Type...
  • Page 415: Settings

    Section 11 1MRK 511 287-UUS A Logic Name Type Description OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 11.7.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.7.6 Operation principle With integer 15 on the input INP the OUT1 = OUT2 = OUT3= OUT4 =1 and the...
  • Page 416: Integer To Boolean 16 Conversion With Logic Node Representation Ib16Fcvb

    Section 11 1MRK 511 287-UUS A Logic Name of OUTx Type Description Value when Value when activated deactivated OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN...
  • Page 417: Function Block

    Section 11 1MRK 511 287-UUS A Logic IB16FCVB function can receive remote values over IEC61850 when the operator position input PSTO is in position remote. The block input will freeze the output at the last value. 11.8.3 Function block IB16FCVB BLOCK OUT1 PSTO...
  • Page 418: Settings

    Section 11 1MRK 511 287-UUS A Logic Name Type Description OUT10 BOOLEAN Output 10 OUT11 BOOLEAN Output 11 OUT12 BOOLEAN Output 12 OUT13 BOOLEAN Output 13 OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 11.8.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.8.6...
  • Page 419: Elapsed Time Integrator With Limit Transgression And Overflow Supervision Teiggio

    Section 11 1MRK 511 287-UUS A Logic Table 332: Outputs and their values when activated Name of OUTx Type Description Value when Value when activated deactivated OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN...
  • Page 420: Functionality

    Section 11 1MRK 511 287-UUS A Logic 11.9.2 Functionality Elapsed Time Integrator (TEIGGIO) function is a function that accumulates the elapsed time when a given binary signal has been high. The main features of TEIGGIO are • Applicable to long time integration (≤999 999.9 seconds). •...
  • Page 421: Settings

    Section 11 1MRK 511 287-UUS A Logic Table 334: TEIGGIO Output signals Name Type Description WARNING BOOLEAN Indicator of the integrated time has reached the warning limit ALARM BOOLEAN Indicator of the integrated time has reached the alarm limit OVERFLOW BOOLEAN Indicator of the integrated time has reached the overflow limit...
  • Page 422 Section 11 1MRK 511 287-UUS A Logic Loop Delay tOverflow tWarning OVERFLOW tAlarm WARNING Transgression Supervision Plus Retain ALARM BLOCK RESET ACCTIME Time Integration Loop Delay IEC12000195-2-en.vsd IEC12000195 V2 EN Figure 196: TEIGGIO Simplified logic TEIGGIO main functionalities are • integrate the elapsed time when IN has been high •...
  • Page 423: Operation Accuracy

    Section 11 1MRK 511 287-UUS A Logic tAlarm and tWarning are user settable limits. They are also independent, that is, there is no check if tAlarm > tWarning. tAlarm and tWarning are possible to be defined with a resolution of 10 ms, depending on the level of the defined values for the parameters.
  • Page 425: Measurements

    Section 12 1MRK 511 287-UUS A Monitoring Section 12 Monitoring 12.1 Measurements 12.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850.
  • Page 426: Measurements Cvmmxn

    Section 12 1MRK 511 287-UUS A Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • V: phase-to-phase voltage magnitude • I: phase current magnitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
  • Page 427: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* V3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD V_RANGE...
  • Page 428: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Description REAL Power factor magnitude of deadband value PF_RANGE INTEGER Power factor range ILAG BOOLEAN Current is lagging voltage ILEAD BOOLEAN Current is leading voltage REAL Calculated voltage magnitude of deadband value U_RANGE INTEGER Calcuated voltage range...
  • Page 429 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description PMax -2000.0 - 2000.0 200.0 Maximum value in % of SBase PRepTyp Cyclic Cyclic Reporting type Dead band Int deadband QMin -2000.0 - 2000.0 -200.0 Minimum value in % of SBase QMax -2000.0 - 2000.0 200.0...
  • Page 430 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description PDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s PZeroDb 0 - 100000 Zero point clamping PHiLim -2000.0 - 2000.0 120.0 High limit in % of SBase...
  • Page 431: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description IHiHiLim 0.0 - 500.0 150.0 High High limit in % of IBase IHiLim 0.0 - 500.0 120.0 High limit in % of IBase ILowLim 0.0 - 500.0 80.0 Low limit in % of IBase ILowLowLim...
  • Page 432: Phase Current Measurement Cmmxu

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Values (Range) Unit Description REAL Power factor magnitude of deadband value REAL Calculated voltage magnitude of deadband value REAL Calculated current magnitude of deadband value REAL System frequency magnitude of deadband value 12.1.3 Phase current measurement CMMXU 12.1.3.1...
  • Page 433: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Table 343: CMMXU Output signals Name Type Description REAL IA Amplitude IA_RANGE INTEGER Phase A current magnitude range IA_ANGL REAL IA Angle REAL IB Amplitude IB_RANGE INTEGER Phase B current magnitude range IB_ANGL REAL IB Angle REAL...
  • Page 434: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description IMagComp5 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 5% of In IMagComp30 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 30% of IMagComp100 -10.000 - 10.000 0.001...
  • Page 435: Signals

    Section 12 1MRK 511 287-UUS A Monitoring VMMXU V3P* V_AB VAB_RANG VAB_ANGL V_BC VBC_RANG VBC_ANGL V_CA VCA_RANG VCA_ANGL ANSI08000223-1-en.vsd ANSI08000223 V1 EN Figure 199: VMMXU function block 12.1.4.3 Signals Table 347: VMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 348: VMMXU Output signals...
  • Page 436: Settings

    Section 12 1MRK 511 287-UUS A Monitoring 12.1.4.4 Settings Table 349: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups VLDbRepInt 1 - 300...
  • Page 437: Current Sequence Component Measurement Cmsqi

    Section 12 1MRK 511 287-UUS A Monitoring 12.1.5 Current sequence component measurement CMSQI 12.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 12.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 438: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Description I1RANG INTEGER I1Amplitude range I1ANGL REAL I1 Angle REAL I2 Amplitude I2RANG INTEGER I2 Magnitude range I2ANGL REAL I2Angle 12.1.5.4 Settings Table 354: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 439: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring Table 355: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
  • Page 440: Voltage Sequence Measurement Vmsqi

    Section 12 1MRK 511 287-UUS A Monitoring 12.1.6 Voltage sequence measurement VMSQI 12.1.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Voltage sequence measurement VMSQI U1, U2, U0 SYMBOL-TT V1 EN 12.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 441: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Description V1RANG INTEGER V1 Magnitude range V1ANGL REAL U1 Angle REAL U2 Amplitude V2RANG INTEGER V2 Magnitude range V2ANGL REAL U2 Angle 12.1.6.4 Settings Table 359: VMSQI Non group settings (basic) Name Values (Range) Unit...
  • Page 442: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring Table 360: VMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3V0ZeroDb 0 - 100000 Zero point clamping 3V0HiHiLim 0 - 2000000 288000 High High limit (physical value) 3V0HiLim 0 - 2000000 258000 High limit (physical value) 3V0LowLim...
  • Page 443: Phase-Neutral Voltage Measurement Vnmmxu

    Section 12 1MRK 511 287-UUS A Monitoring 12.1.7 Phase-neutral voltage measurement VNMMXU 12.1.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-neutral voltage measurement VNMMXU SYMBOL-UU V1 EN 12.1.7.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 444: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Description VB_RANGE INTEGER V_B Amplitude range VB_ANGL REAL V_B Angle, magnitude of reported value REAL V_C Amplitude, magnitude of reported value VC_RANGE INTEGER V_C Amplitude range VC_ANGL REAL VC Angle, magnitude of reported value 12.1.7.4 Settings Table 364:...
  • Page 445: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring 12.1.7.5 Monitored data Table 366: VNMMXU Monitored data Name Type Values (Range) Unit Description REAL V_A Amplitude, magnitude of reported value VA_ANGL REAL V_A Angle, magnitude of reported value REAL V_B Amplitude, magnitude of reported value VB_ANGL REAL...
  • Page 446 Section 12 1MRK 511 287-UUS A Monitoring clamping might be overridden by the zero point clamping used for the measurement values within CVMMXN. Continuous monitoring of the measured quantity Users can continuously monitor the measured quantity available in each function block by means of four defined operating thresholds, see figure 203.
  • Page 447 Section 12 1MRK 511 287-UUS A Monitoring Actual value of the measured quantity The actual value of the measured quantity is available locally and remotely. The measurement is continuous for each measured quantity separately, but the reporting of the value to the higher levels depends on the selected reporting mode. The following basic reporting modes are available: •...
  • Page 448 Section 12 1MRK 511 287-UUS A Monitoring Magnitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (UDbRepIn), then the measuring channel reports the new value to a higher level.
  • Page 449: Measurements Cvmmxn

    Section 12 1MRK 511 287-UUS A Monitoring reported and set as a new base for the following measurements (as well as for the values Y3, Y4 and Y5). The integral dead-band supervision is particularly suitable for monitoring signals with small variations that can last for relatively long periods. A1 >= pre-set value A >=...
  • Page 450 Section 12 1MRK 511 287-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” A, B, C Used when three × × × phase-to-ground voltages are EQUATION1561 V1 EN available EQUATION1562 V1 EN...
  • Page 451 Section 12 1MRK 511 287-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” Used when only × phase-to- = × × ground voltage is available (Equation 52) EQUATION1575 V1 EN...
  • Page 452 Section 12 1MRK 511 287-UUS A Monitoring Each analog output has a corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4, see section "Measurement supervision". Calibration of analog inputs Measured currents and voltages used in the CVMMXN function can be calibrated to get class 0.5 measuring accuracy.
  • Page 453 Section 12 1MRK 511 287-UUS A Monitoring measured quantity. Filtering is performed in accordance with the following recursive formula: = × × Calculated (Equation 60) EQUATION1407 V1 EN where: is a new measured value (that is P, Q, S, V, I or PF) to be given out from the function is the measured value given from the measurement function in previous execution cycle is the new calculated value in the present execution cycle Calculated...
  • Page 454: Phase Current Measurement Cmmxu

    Section 12 1MRK 511 287-UUS A Monitoring Directionality CTStartPoint defines if the CTs grounding point is located towards or from the protected object under observation. If everything is properly set power is always measured towards protection object. Busbar Protected Object ANSI05000373_2_en.vsd ANSI05000373 V2 EN Figure 208:...
  • Page 455: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 12 1MRK 511 287-UUS A Monitoring of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 207. Phase currents (magnitude and angle) are available on the outputs and each magnitude output has a corresponding supervision level output (Ix_RANGE). The supervision output signal is an integer in the interval 0-4, see section "Measurement supervision".
  • Page 456: Event Counter Cntggio

    Section 12 1MRK 511 287-UUS A Monitoring Function Range or value Accuracy Reactive power, Q 0.1 x V < V < 1.5 x V ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
  • Page 457: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.2.4 Signals Table 368: CNTGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function COUNTER1 BOOLEAN Input for counter 1 COUNTER2 BOOLEAN Input for counter 2 COUNTER3 BOOLEAN Input for counter 3 COUNTER4 BOOLEAN Input for counter 4...
  • Page 458: Operation Principle

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Values (Range) Unit Description VALUE4 INTEGER Output of counter 4 VALUE5 INTEGER Output of counter 5 VALUE6 INTEGER Output of counter 6 12.2.7 Operation principle Event counter (CNTGGIO) has six counter inputs. CNTGGIO stores how many times each of the inputs has been activated.
  • Page 459: Function Description

    Section 12 1MRK 511 287-UUS A Monitoring 12.3 Function description Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Limit counter L4UFCNT 12.3.1 Limit counter L4UFCNT 12.3.2 Introduction Limit counter (L4UFCNT) provides a settable counter with four independent limits where the number of positive and/or negative flanks on the input signal are counted against the setting values for limits.
  • Page 460 Section 12 1MRK 511 287-UUS A Monitoring BLOCK INPUT Operation Counter RESET VALUE Overflow CountType OVERFLOW Detection OnMaxValue LIMIT1 … 4 Limit MaxValue Check CounterLimit1...4 ERROR Error Detection InitialValue IEC12000625_1_en.vsd IEC12000625 V1 EN Figure 210: Logic diagram The counter can be initialized to count from a settable non-zero value after reset of the function.
  • Page 461: Reporting

    Section 12 1MRK 511 287-UUS A Monitoring The Error output is activated as an indicator of setting the counter limits and/or initial value setting(s) greater than the maximum value. The counter stops counting the input and all the outputs except the error output remains at zero state. The error condition remains until the correct settings for counter limits and/or initial value setting(s) are applied.
  • Page 462: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Table 374: L4UFCNT Output signals Name Type Description ERROR BOOLEAN Error indication on counter limit and/or initial value settings OVERFLOW BOOLEAN Overflow indication on count of greater than MaxValue LIMIT1 BOOLEAN Counted value is larger than or equal to CounterLimit1 LIMIT2 BOOLEAN Counted value is larger than or equal to CounterLimit2...
  • Page 463: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring 12.3.8 Technical data Table 377: L4UFCNTtechnical data Function Range or value Accuracy Counter value 0-65535 Max. count up speed 5-160 pulses/s 12.4 Disturbance report 12.4.1 Functionality Complete and reliable information about disturbances in the primary and/or in the secondary system together with continuous event-logging is accomplished by the disturbance report functionality.
  • Page 464: Disturbance Report Drprdre

    Section 12 1MRK 511 287-UUS A Monitoring 12.4.2 Disturbance report DRPRDRE 12.4.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Disturbance report DRPRDRE 12.4.2.2 Function block DRPRDRE DRPOFF RECSTART RECMADE CLEARED MEMUSED IEC09000346-1-en.vsd IEC09000346 V1 EN Figure 212: DRPRDRE function block 12.4.2.3...
  • Page 465: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description PostRetrig Disabled Disabled Post-fault retrig enabled (On) or not (Off) Enabled MaxNoStoreRec 10 - 100 Maximum number of stored disturbances ZeroAngleRef 1 - 30 Trip value recorder, phasor reference channel OpModeTest Disabled Disabled...
  • Page 466 Section 12 1MRK 511 287-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh8 BOOLEAN Over level trig for analog channel 8 activated UnTrigStatCh9 BOOLEAN Under level trig for analog channel 9 activated OvTrigStatCh9 BOOLEAN Over level trig for analog channel 9 activated UnTrigStatCh10 BOOLEAN...
  • Page 467 Section 12 1MRK 511 287-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh19 BOOLEAN Over level trig for analog channel 19 activated UnTrigStatCh20 BOOLEAN Under level trig for analog channel 20 activated OvTrigStatCh20 BOOLEAN Over level trig for analog channel 20 activated UnTrigStatCh21 BOOLEAN...
  • Page 468 Section 12 1MRK 511 287-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh30 BOOLEAN Over level trig for analog channel 30 activated UnTrigStatCh31 BOOLEAN Under level trig for analog channel 31 activated OvTrigStatCh31 BOOLEAN Over level trig for analog channel 31 activated UnTrigStatCh32 BOOLEAN...
  • Page 469: Analog Input Signals Axradr

    Section 12 1MRK 511 287-UUS A Monitoring 12.4.3 Analog input signals AxRADR 12.4.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Analog input signals A1RADR Analog input signals A2RADR Analog input signals A3RADR 12.4.3.2 Function block A1RADR ^GRPINPUT1 ^GRPINPUT2...
  • Page 470: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Table 381: A1RADR Input signals Name Type Default Description GRPINPUT1 GROUP Group signal for input 1 SIGNAL GRPINPUT2 GROUP Group signal for input 2 SIGNAL GRPINPUT3 GROUP Group signal for input 3 SIGNAL GRPINPUT4 GROUP Group signal for input 4...
  • Page 471 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description Operation05 Disabled Disabled Operation On/Off Enabled Operation06 Disabled Disabled Operation On/Off Enabled Operation07 Disabled Disabled Operation On/Off Enabled Operation08 Disabled Disabled Operation On/Off Enabled Operation09 Disabled Disabled Operation On/Off Enabled...
  • Page 472 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description FunType9 0 - 255 Function type for analog channel 9 (IEC-60870-5-103) InfNo9 0 - 255 Information number for analog channel 9 (IEC-60870-5-103) FunType10 0 - 255 Function type for analog channel 10 (IEC-60870-5-103) InfNo10...
  • Page 473 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp04 Disabled Disabled Use over level trigger for analog channel 4 (on) Enabled or not (off) OverTrigLe04 0 - 5000 Over trigger level for analog channel 4 in % of signal NomValue05 0.0 - 999999.9...
  • Page 474: Analog Input Signals A4Radr

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe09 0 - 200 Under trigger level for analog channel 9 in % of signal OverTrigOp09 Disabled Disabled Use over level trigger for analog channel 9 (on) Enabled or not (off) OverTrigLe09...
  • Page 475: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.4.4.3 Signals Table 384: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL Analog channel 33 INPUT34 REAL Analog channel 34 INPUT35 REAL Analog channel 35 INPUT36 REAL...
  • Page 476 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
  • Page 477 Section 12 1MRK 511 287-UUS A Monitoring Table 386: A4RADR Non group settings (advanced) Name Values (Range) Unit Step Default Description NomValue31 0.0 - 999999.9 Nominal value for analog channel 31 UnderTrigOp31 Disabled Disabled Use under level trigger for analog channel 31 Enabled (on) or not (off) UnderTrigLe31...
  • Page 478 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp35 Disabled Disabled Use over level trigger for analog channel 35 Enabled (on) or not (off) OverTrigLe35 0 - 5000 Over trigger level for analog channel 35 in % of signal NomValue36 0.0 - 999999.9...
  • Page 479: Binary Input Signals Bxrbdr

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe40 0 - 200 Under trigger level for analog channel 40 in % of signal OverTrigOp40 Disabled Disabled Use over level trigger for analog channel 40 Enabled (on) or not (off) OverTrigLe40...
  • Page 480: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.4.5.3 Signals B1RBDR - B6RBDR Input signals Tables for input signals for B1RBDR - B6RBDR are all similar except for INPUT and description number. • B1RBDR, INPUT1 - INPUT16 • B2RBDR, INPUT17 - INPUT32 •...
  • Page 481 Section 12 1MRK 511 287-UUS A Monitoring • B4RBDR, channel49 - channel64 • B5RBDR, channel65 - channel80 • B6RBDR, channel81 - channel96 Table 388: B1RBDR Non group settings (basic) Name Values (Range) Unit Step Default Description TrigDR01 Disabled Disabled Trigger operation On/Off Enabled SetLED01 Disabled...
  • Page 482 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigDR08 Disabled Disabled Trigger operation On/Off Enabled SetLED08 Disabled Disabled Set LED on HMI for binary channel 8 Start Trip Pick up and trip TrigDR09 Disabled Disabled Trigger operation On/Off Enabled...
  • Page 483 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigDR16 Disabled Disabled Trigger operation On/Off Enabled SetLED16 Disabled Disabled Set LED on HMI for binary channel 16 Start Trip Pick up and trip FunType1 0 - 255 Function type for binary channel 1 (IEC -60870-5-103) InfNo1...
  • Page 484 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description FunType11 0 - 255 Function type for binary channel 11 (IEC -60870-5-103) InfNo11 0 - 255 Information number for binary channel 11 (IEC -60870-5-103) FunType12 0 - 255 Function type for binary channel 12 (IEC -60870-5-103) InfNo12...
  • Page 485 Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigLevel05 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope for Trig on 1 binary input 5 IndicationMa05 Hide Hide Indication mask for binary channel 5 Show TrigLevel06 Trig on 0...
  • Page 486: Operation Principle

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description IndicationMa15 Hide Hide Indication mask for binary channel 15 Show TrigLevel16 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope for Trig on 1 binary input 16 IndicationMa16...
  • Page 487 Section 12 1MRK 511 287-UUS A Monitoring A1-4RADR Disturbance Report A4RADR DRPRDRE Analog signals Trip value rec B1-6RBDR Disturbance recorder Binary signals B6RBDR Sequential of events Event recorder Indications ANSI09000337-1-en.vsd ANSI09000337 V1 EN Figure 216: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 488: Disturbance Information

    Section 12 1MRK 511 287-UUS A Monitoring Up to 100 disturbance reports can be stored. If a new disturbance is to be recorded when the memory is full, the oldest disturbance report is overwritten by the new one. The total recording capacity for the disturbance recorder is depending of sampling frequency, number of analog and binary channels and recording time.
  • Page 489: Trip Value Recorder

    Section 12 1MRK 511 287-UUS A Monitoring 12.4.6.5 Trip value recorder The recorded trip values include phasors of selected analog signals before the fault and during the fault, see Trip value recorder section for detailed information. 12.4.6.6 Disturbance recorder Disturbance recorder records analog and binary signal data before, during and after the fault, see Disturbance recorder section for detailed information.
  • Page 490: Analog Signals

    Section 12 1MRK 511 287-UUS A Monitoring Trig point TimeLimit PreFaultRecT PostFaultRecT en05000487.vsd IEC05000487 V1 EN Figure 218: The recording times definition PreFaultRecT, 1 Pre-fault or pre-trigger recording time. The time before the fault including the operate time PreFaultRecT to set this time. of the trigger.
  • Page 491 Section 12 1MRK 511 287-UUS A Monitoring SMAI A1RADR GRPNAME AI3P A2RADR AI1NAME GRPINPUT1 A3RADR External analog AI2NAME GRPINPUT2 signals AI3NAME GRPINPUT3 AI4NAME GRPINPUT4 GRPINPUT5 GRPINPUT6 A4RADR INPUT31 INPUT32 INPUT33 Internal analog signals INPUT34 INPUT35 INPUT36 INPUT40 en05000653-2.vsd IEC05000653 V2 EN Figure 219: Analog input function blocks The external input signals will be acquired, filtered and skewed and (after configuration)
  • Page 492: Binary Signals

    Section 12 1MRK 511 287-UUS A Monitoring If Operation = Disabled, no waveform (samples) will be recorded and reported in graph. However, Trip value, pre-fault and fault value will be recorded and reported. The input channel can still be used to trig the disturbance recorder. If Operation = Enabled, waveform (samples) will also be recorded and reported in graph.
  • Page 493: Post Retrigger

    Section 12 1MRK 511 287-UUS A Monitoring Manual trigger A disturbance report can be manually triggered from the local HMI, PCM600 or via station bus (IEC 61850). When the trigger is activated, the manual trigger signal is generated. This feature is especially useful for testing. Binary-signal trigger Any binary signal state (logic one or a logic zero) can be selected to generate a trigger (Triglevel = Trig on 0/Trig on 1).
  • Page 494: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring Disturbance report function can handle maximum 3 simultaneous disturbance recordings. 12.4.7 Technical data Table 390: DRPRDRE technical data Function Range or value Accuracy Current recording ± 1,0% of I at I ≤ I ±...
  • Page 495: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring changed status during a disturbance. This information is used in the short perspective to get information via the local HMI in a straightforward way. There are three LEDs on the local HMI (green, yellow and red), which will display status information about the IED and the Disturbance recorder function (triggered).
  • Page 496: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring The indication function tracks 0 to 1 changes of binary signals during the recording period of the collection window. This means that constant logic zero, constant logic one or state changes from logic one to logic zero will not be visible in the list of indications. Signals are not time tagged.
  • Page 497: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.6.2 Function block The Event recorder has no function block of it’s own. 12.6.3 Signals 12.6.3.1 Input signals The Event recorder function logs the same binary input signals as the Disturbance report function. 12.6.4 Operation principle When one of the trig conditions for the disturbance report is activated, the event recorder...
  • Page 498: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring 12.6.5 Technical data Table 392: DRPRDRE technical data Function Value Buffer capacity Maximum number of events in disturbance report Maximum number of disturbance reports Resolution 1 ms Accuracy Depending on time synchronizing 12.7 Sequential of events 12.7.1 Functionality...
  • Page 499: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring The list can be configured to show oldest or newest events first with a setting on the local HMI. The sequential of events function runs continuously, in contrast to the event recorder function, which is only active during a disturbance, and each event record is an integral part of its associated DR.
  • Page 500: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.8.3 Signals 12.8.3.1 Input signals The trip value recorder function uses analog input signals connected to A1RADR to A3RADR (not A4RADR). 12.8.4 Operation principle Trip value recorder calculates and presents both fault and pre-fault magnitudes as well as the phase angles of all the selected analog input signals.
  • Page 501: Disturbance Recorder

    Section 12 1MRK 511 287-UUS A Monitoring 12.9 Disturbance recorder 12.9.1 Functionality The Disturbance recorder function supplies fast, complete and reliable information about disturbances in the power system. It facilitates understanding system behavior and related primary and secondary equipment during and after a disturbance. Recorded information is used for different purposes in the short perspective (for example corrective actions) and long perspective (for example functional analysis).
  • Page 502 Section 12 1MRK 511 287-UUS A Monitoring Disturbance recorder collects analog values and binary signals continuously, in a cyclic buffer. The pre-fault buffer operates according to the FIFO principle; old data will continuously be overwritten as new data arrives when the buffer is full. The size of this buffer is determined by the set pre-fault recording time.
  • Page 503 Section 12 1MRK 511 287-UUS A Monitoring The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions. The Disturbance handling tool use this information and present the recording in a user-friendly way.
  • Page 504: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring 12.9.6 Technical data Table 395: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number of 340 seconds (100 channels, typical value) recordings) at 50 Hz...
  • Page 505: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.10.4 Signals Table 396: SPGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input status 12.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 506: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.11.3 Function block SP16GGIO BLOCK ^IN1 ^IN2 ^IN3 ^IN4 ^IN5 ^IN6 ^IN7 ^IN8 ^IN9 ^IN10 ^IN11 ^IN12 ^IN13 ^IN14 ^IN15 ^IN16 IEC09000238_en_1.vsd IEC09000238 V1 EN Figure 221: SP16GGIO function block 12.11.4 Signals Table 397: SP16GGIO Input signals Name Type...
  • Page 507: Settings

    Section 12 1MRK 511 287-UUS A Monitoring 12.11.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 12.11.6 MonitoredData Table 398: SP16GGIO Monitored data Name Type Values (Range) Unit Description OUT1 GROUP Output 1 status...
  • Page 508: Operation Principle

    Section 12 1MRK 511 287-UUS A Monitoring 12.11.7 Operation principle Upon receiving signals at its inputs, IEC 61850 generic communication I/O functions 16 inputs (SP16GGIO) function will send the signals over IEC 61850-8-1 to the equipment or system that requests this signals. To be able to get the signal, one must use other tools, described in the Engineering manual and define which function block in which equipment or system should receive this information.
  • Page 509: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Table 400: MVGGIO Output signals Name Type Description VALUE REAL Magnitude of deadband value RANGE INTEGER Range 12.12.5 Settings Table 401: MVGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description BasePrefix micro unit...
  • Page 510: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring 12.12.6 Monitored data Table 402: MVGGIO Monitored data Name Type Values (Range) Unit Description VALUE REAL Magnitude of deadband value RANGE INTEGER 0=Normal Range 1=High 2=Low 3=High-High 4=Low-Low 12.12.7 Operation principle Upon receiving an analog signal at its input, IEC61850 generic communication I/O functions (MVGGIO) will give the instantaneous value of the signal and the range, as output values.
  • Page 511: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.13.3 Function block MVEXP RANGE* HIGHHIGH HIGH NORMAL LOWLOW IEC09000215-1-en.vsd IEC09000215 V1 EN Figure 222: MVEXP function block 12.13.4 Signals Table 403: MVEXP Input signals Name Type Default Description RANGE INTEGER Measured value range Table 404: MVEXP Output signals Name...
  • Page 512: Fault Locator Lmbrflo

    Section 12 1MRK 511 287-UUS A Monitoring Table 405: Input integer value converted to binary output signals Measured supervised below low-low between low‐ between low between high- above high-high value is: limit low and low and high limit high and high limit limit limit...
  • Page 513: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring with recorded load (pre-fault) currents, is used to exactly calculate the fault position. The fault can be recalculated with new source data at the actual fault to further increase the accuracy. Especially on heavily loaded long lines, where the source voltage angles can be up to 35-40 degrees apart, the accuracy can be still maintained with the advanced compensation included in fault locator.
  • Page 514: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Description BCD_8 BOOLEAN Distance in binary coded data, bit represents 8% BCD_4 BOOLEAN Distance in binary coded data, bit represents 4% BCD_2 BOOLEAN Distance in binary coded data, bit represents 2% BCD_1 BOOLEAN Distance in binary coded data, bit represents 1%...
  • Page 515: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description DrepChNoV_A 1 - 30 Recorder Input number recording phase voltage, VA DrepChNoV_B 1 - 30 Recorder Input number recording phase voltage, VB DrepChNoV_C 1 - 30 Recorder Input number recording phase voltage, VC 12.14.6...
  • Page 516: Measuring Principle

    Section 12 1MRK 511 287-UUS A Monitoring DRPRDRE ANSI09000726-1-en.vsd LMBRFLO ANSI09000726 V1 EN Figure 224: Simplified network configuration with network data, required for settings of the fault location-measuring function If source impedance in the near and far end of the protected line have changed in a significant manner relative to the set values at fault location calculation time (due to exceptional switching state in the immediate network, power generation out of order, and so on), new values can be entered via the local HMI and a recalculation of the distance to...
  • Page 517 Section 12 1MRK 511 287-UUS A Monitoring (1-p).Z xx01000171_ansi.vsd ANSI01000171 V1 EN Figure 225: Fault on transmission line fed from both ends From figure it is evident that: × × + × I p Z (Equation 61) EQUATION1595 V1 EN Where: is the line current after the fault, that is, pre-fault current plus current change due to the fault, is the fault current and...
  • Page 518 Section 12 1MRK 511 287-UUS A Monitoring × – ----------------------------------------- (Equation 63) EQUATION97 V1 EN Thus, the general fault location equation for a single line is: × × × I p Z (Equation 64) EQUATION1596 V1 EN Table 411: Expressions for V and I for different types of faults Fault type:...
  • Page 519 Section 12 1MRK 511 287-UUS A Monitoring × × × × I p Z (Equation 66) EQUATION1600 V1 EN Where: is a zero sequence current of the parallel line, is a mutual zero sequence impedance and is the distribution factor of the parallel line, which is: ×...
  • Page 520: The Non-Compensated Impedance Model

    Section 12 1MRK 511 287-UUS A Monitoring æ ö × --------------- - -------------------------- - è ø × A DD (Equation 71) EQUATION106 V1 EN and: • for parallel lines. • and V are given in the above table. • is calculated automatically according to equation 67. •...
  • Page 521: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring = × × × (Equation 74) EQUATION1603 V1 EN Where: is according to table 411. The accuracy of the distance-to-fault calculation, using the non-compensated impedance model, is influenced by the pre-fault load current. So, this method is only used if the load compensated models do not function.
  • Page 522: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.15.2 Function block SPVNZBAT V_BATT AL_VLOW BLOCK AL_VHI PU_VLOW PU_VHI ANSI12000026-1-en.vsd ANSI12000026 V1 EN Figure 226: Function block 12.15.3 Functionality The station battery supervision function SPVNZBAT is used for monitoring battery terminal voltage. SPVNZBAT activates the start and alarm outputs when the battery terminal voltage exceeds the set upper limit or drops below the set lower limit.
  • Page 523: Settings

    Section 12 1MRK 511 287-UUS A Monitoring 12.15.5 Settings Table 415: SPVNZBAT Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Disable/Enable Operation Enabled RtdBattVolt 20.00 - 250.00 1.00 110.00 Battery rated voltage BattVoltLowLim 60 - 140 %Vbat Lower limit for the battery terminal voltage BattVoltHiLim...
  • Page 524 Section 12 1MRK 511 287-UUS A Monitoring Comparator PU_VLOW V<BattVoltLowLim 0-tDelay AL_VLOW V_BATT 0-tReset Comparator PU_VHI U<BattVoltHiLim 0-tDelay AL_VHI 0-tReset ANSI11000292-1-en.vsd ANSI11000292 V1 EN Figure 227: Functional module diagram The battery rated voltage is set with the RtdBattVolt setting. The value of the BattVoltLowLim and BattVoltHiLim settings are given in relative per unit to the RtdBattVolt setting.
  • Page 525: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring 12.15.9 Technical data Table 418: SPVNZBAT Technical data Function Range or value Accuracy Lower limit for the battery terminal (60-140) % of Vbat ± 1.0% of set battery voltage voltage Reset ratio, lower limit <105 % Upper limit for the battery terminal (60-140) % of Vbat...
  • Page 526: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.16.4 Signals Inputs PRESSURE and TEMP together with settings PressAlmLimit, PressLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series. Table 419: SSIMG (63) Input signals Name Type Default Description BLOCK BOOLEAN Block of function...
  • Page 527: Operation Principle

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description TempLOLimit -40.00 - 200.00 0.01 30.00 Temperature lockout level of the medium tPressureAlarm 0.000 - 60.000 0.001 0.000 Time delay for pressure alarm tPressureLO 0.000 - 60.000 0.001 0.000 Time delay for pressure lockout indication...
  • Page 528 Section 12 1MRK 511 287-UUS A Monitoring 12.17 Insulation liquid monitoring function SSIML (71) 12.17.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Insulation liquid monitoring function SSIML 12.17.2 Functionality Insulation liquid monitoring function SSIML (71) is used for monitoring the circuit breaker condition.
  • Page 529: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Table 423: SSIML (71) Input signals Name Type Default Description BLOCK BOOLEAN Block of function BLK_ALM BOOLEAN Block all the alarms LEVEL REAL Level input from CB TEMP REAL Temperature of the insulation medium from CB LVL_ALM BOOLEAN Level alarm signal...
  • Page 530: Operation Principle

    Section 12 1MRK 511 287-UUS A Monitoring Name Values (Range) Unit Step Default Description tResetLevelLO 0.000 - 60.000 0.001 0.000 Reset time delay for level lockout tResetTempLO 0.000 - 60.000 0.001 0.000 Reset time delay for temperture lockout tResetTempAlm 0.000 - 60.000 0.001 0.000 Reset time delay for temperture alarm...
  • Page 531: Functionality

    Section 12 1MRK 511 287-UUS A Monitoring 12.18.2 Functionality The circuit breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. For proper functioning of the circuit breaker, it is essential to monitor the circuit breaker operation, spring charge indication, breaker wear, travel time, number of operation cycles and accumulated energy.
  • Page 532: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.18.4 Signals Table 427: SSCBR Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function BLK_ALM BOOLEAN Block all the alarms POSOPEN BOOLEAN Signal for open position of apparatus from I/O POSCLOSE BOOLEAN...
  • Page 533: Settings

    Section 12 1MRK 511 287-UUS A Monitoring 12.18.5 Settings Table 429: SSCBR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On AccDisLevel 5.00 - 500.00 0.01 10.00 RMS current setting below which energy accumulation stops CurrExp 0.00 - 2.00...
  • Page 534: Monitored Data

    Section 12 1MRK 511 287-UUS A Monitoring 12.18.6 Monitored data Table 430: SSCBR Monitored data Name Type Values (Range) Unit Description CBOTRVT REAL Travel time of the CB during opening operation CBCLTRVT REAL Travel time of the CB during closing operation SPRCHRT REAL The charging time of the CB...
  • Page 535 Section 12 1MRK 511 287-UUS A Monitoring CBOPEN POSCLOSE Circuit POSOPEN breaker CBINVPOS status Operation NOOPRALM monitoring BLK_ALM BLOCK TRVTOAL Breaker contact travel time TRVTCAL TRVTRST OPRALM Operation counter OPRLOALM IACCALM Accumula- ted energy IACCLOAL IACCRST Breaker CBLIFEAL life time CBCNTRST Spring SPRCHRGN...
  • Page 536 Section 12 1MRK 511 287-UUS A Monitoring breaker status monitoring can be described using a module diagram. All the modules in the diagram are explained in the next sections. POSCLOSE CBOPEN Contact POSOPEN position CBINVPOS indicator Phase current check GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B-ANSI V1 EN Figure 232: Functional module diagram for monitoring circuit breaker status BLOCK and BLK_ALM inputs...
  • Page 537 Section 12 1MRK 511 287-UUS A Monitoring GUID-82C88B52-1812-477F-8B1A-3011A300547A V1 EN Figure 233: Functional module diagram for calculating inactive days and alarm for circuit breaker operation monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state.
  • Page 538 Section 12 1MRK 511 287-UUS A Monitoring Travelling time calculator The breaker contact travel time is calculated from the time between auxiliary contacts' state change. The open travel time is measured between the opening of the POSCLOSE auxiliary contact and the closing of the POSOPEN auxiliary contact. Travel time is also measured between the opening of the POSOPEN auxiliary contact and the closing of the POSCLOSE auxiliary contact.
  • Page 539 Section 12 1MRK 511 287-UUS A Monitoring 12.18.7.4 Operation counter The operation counter subfunction calculates the number of breaker operation cycles. Both open and close operations are included in one operation cycle. The operation counter value is updated after each open operation. The operation of the subfunction can be described by using a module diagram.
  • Page 540 Section 12 1MRK 511 287-UUS A Monitoring IACCLOAL Accumula- Alarm limit ted energy check calculator IACCALM POSCLOSE IACCRST BLOCK BLK_ALM GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A-ANSI V1 EN Figure 236: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s].
  • Page 541 Section 12 1MRK 511 287-UUS A Monitoring be reset by setting the Clear accum. breaking curr setting to on in the clear menu from LHMI. Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting.
  • Page 542 Section 12 1MRK 511 287-UUS A Monitoring The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFE_A (_B, _C). The values can be cleared by setting the parameter CB wear values in the clear menu from LHMI. Clearing CB wear values also resets the operation counter.
  • Page 543 Section 12 1MRK 511 287-UUS A Monitoring Spring charge time measurement Two binary inputs, SPRCHRGN and SPRCHRGD, indicate spring charging started and spring charged, respectively. The spring charging time is calculated from the difference of these two signal timings. The spring charging time SPRCHRT is available through the Monitored data view . Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm.
  • Page 544: Technical Data

    Section 12 1MRK 511 287-UUS A Monitoring The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates all outputs and resets internal timers. The alarm signals from the function can be blocked by activating the binary input BLK_ALM. 12.18.8 Technical data Table 431:...
  • Page 545: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 241: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
  • Page 546: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.19.3 Signals Table 432: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase A REAL Service value for current phase B REAL Service value for current phase C REAL Service value for residual current IN...
  • Page 547 Section 12 1MRK 511 287-UUS A Monitoring 12.20 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 12.20.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
  • Page 548: Settings

    Section 12 1MRK 511 287-UUS A Monitoring 12.20.4 Settings Table 435: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
  • Page 549: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.21.2 Function block I103AR BLOCK 16_ARACT 128_CBON 130_BLKD IEC10000289-2-en.vsd IEC10000289 V2 EN Figure 244: I103AR function block 12.21.3 Signals Table 436: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active...
  • Page 550: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.22.2 Function block I103EF BLOCK 51_EFFW 52_EFREV IEC10000290-1-en.vsd IEC10000290 V1 EN Figure 245: I103EF function block 12.22.3 Signals Table 438: I103EF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 51_EFFW BOOLEAN Information number 51, ground-fault forward...
  • Page 551: Function Block

    Section 12 1MRK 511 287-UUS A Monitoring 12.23.2 Function block I103FLTPROT BLOCK 64_PU_A 65_PU_B 66_PU_C 67_STIN 68_TRGEN 69_TR_A 70_TR_B 71_TR_C 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTR_A 87_MTR_B 88_MTR_C 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG FLTLOC...
  • Page 552: Settings

    Section 12 1MRK 511 287-UUS A Monitoring Name Type Default Description 73_SCL REAL Information number 73, fault location in ohm 74_FW BOOLEAN Information number 74, forward/line 75_REV BOOLEAN Information number 75, reverse/busbar 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1...
  • Page 553 Section 12 1MRK 511 287-UUS A Monitoring 12.24 IED status for IEC 60870-5-103 I103IED 12.24.1 Functionality I103IED is a function block with defined IED functions in monitor direction. This block uses parameter as FunctionType, and information number parameter is defined for each input signal.
  • Page 554 Section 12 1MRK 511 287-UUS A Monitoring 12.25 Supervison status for IEC 60870-5-103 I103SUPERV 12.25.1 Functionality I103SUPERV is a function block with defined functions for supervision indications in monitor direction. This block includes the FunctionType parameter, and the information number parameter is defined for each output signal. 12.25.2 Function block I103SUPERV...
  • Page 555 Section 12 1MRK 511 287-UUS A Monitoring 12.26 Status for user defined signals for IEC 60870-5-103 I103USRDEF 12.26.1 Functionality I103USRDEF is a function blocks with user defined input signals in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the information number parameter for each input signal.
  • Page 556: Signals

    Section 12 1MRK 511 287-UUS A Monitoring 12.26.3 Signals Table 446: I103USRDEF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting INPUT1 BOOLEAN Binary signal Input 1 INPUT2 BOOLEAN Binary signal input 2 INPUT3 BOOLEAN Binary signal input 3 INPUT4 BOOLEAN Binary signal input 4...
  • Page 557: Pulse Counter Pcggio

    Section 13 1MRK 511 287-UUS A Metering Section 13 Metering 13.1 Pulse counter PCGGIO 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 13.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 558: Signals

    Section 13 1MRK 511 287-UUS A Metering 13.1.4 Signals Table 448: PCGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function READ_VAL BOOLEAN Initiates an additional pulse counter reading BI_PULSE BOOLEAN Connect binary input channel for metering RS_CNT BOOLEAN Resets pulse counter value Table 449:...
  • Page 559: Monitored Data

    Section 13 1MRK 511 287-UUS A Metering 13.1.6 Monitored data Table 451: PCGGIO Monitored data Name Type Values (Range) Unit Description CNT_VAL INTEGER Actual pulse counter value SCAL_VAL REAL Scaled value with time and status information 13.1.7 Operation principle The registration of pulses is done according to setting of CountCriteria parameter on one of the 9 binary input channels located on the BIO module.
  • Page 560: Technical Data

    Section 13 1MRK 511 287-UUS A Metering readings according to the setting of parameter CountCriteria. The signal must be a pulse with a length >1 second. The BI_PULSE input is connected to the used input of the function block for the binary input output module (BIO).
  • Page 561: Energy Calculation And Demand Handling Etpmmtr

    Section 13 1MRK 511 287-UUS A Metering 13.2 Energy calculation and demand handling ETPMMTR 13.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Energy calculation and demand ETPMMTR handling IEC10000169 V1 EN 13.2.2 Functionality Outputs from the Measurements (CVMMXN) function can be used to calculate energy consumption.
  • Page 562: Signals

    Section 13 1MRK 511 287-UUS A Metering 13.2.4 Signals Table 453: ETPMMTR Input signals Name Type Default Description REAL Measured active power REAL Measured reactive power STACC BOOLEAN Start to accumulate energy values RSTACC BOOLEAN Reset of accumulated enery reading RSTDMD BOOLEAN Reset of maximum demand reading...
  • Page 563: Settings

    Section 13 1MRK 511 287-UUS A Metering 13.2.5 Settings Table 455: ETPMMTR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled StartAcc Disabled Disabled Activate the accumulation of energy values Enabled tEnergy 1 Minute 1 Minute Time interval for energy calculation...
  • Page 564: Monitored Data

    Section 13 1MRK 511 287-UUS A Metering 13.2.6 Monitored data Table 457: ETPMMTR Monitored data Name Type Values (Range) Unit Description EAFACC REAL Accumulated forward active energy value EARACC REAL Accumulated reverse active energy value ERFACC REAL MVArh Accumulated forward reactive energy value ERRACC REAL...
  • Page 565: Technical Data

    Section 13 1MRK 511 287-UUS A Metering ETPMMTR CVMMXN P_INST Q_INST STACC TRUE RSTACC FALSE RSTDMD FALSE IEC09000106.vsd IEC09000106 V1 EN Figure 253: Connection of Energy calculation and demand handling function (ETPMMTR) to the Measurements function (CVMMXN) 13.2.8 Technical data Table 458: ETPMMTR technical data Function...
  • Page 567: Dnp3 Protocol

    Section 14 1MRK 511 287-UUS A Station communication Section 14 Station communication 14.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 14.2 IEC 61850-8-1 communication protocol 14.2.1...
  • Page 568: Communication Interfaces And Protocols

    Section 14 1MRK 511 287-UUS A Station communication interoperates with other IEC 61850-compliant IEDs, and systems and simultaneously reports events to five different clients on the IEC 61850 station bus. The Denial of Service functions DOSLAN1 and DOSFRNT are included to limit the inbound network traffic.
  • Page 569: Settings

    Section 14 1MRK 511 287-UUS A Station communication 14.2.4 Settings Table 460: IEC61850-8-1 Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled PortSelGOOSE Front LAN1 Port selection for GOOSE communication LAN1 PortSelMMS Front LAN1 Port selection for MMS communication...
  • Page 570: Function Block

    Section 14 1MRK 511 287-UUS A Station communication 14.3.2 Function block GOOSEINTLKRCV BLOCK ^RESREQ ^RESGRANT ^APP1_OP ^APP1_CL APP1VAL ^APP2_OP ^APP2_CL APP2VAL ^APP3_OP ^APP3_CL APP3VAL ^APP4_OP ^APP4_CL APP4VAL ^APP5_OP ^APP5_CL APP5VAL ^APP6_OP ^APP6_CL APP6VAL ^APP7_OP ^APP7_CL APP7VAL ^APP8_OP ^APP8_CL APP8VAL ^APP9_OP ^APP9_CL APP9VAL ^APP10_OP...
  • Page 571 Section 14 1MRK 511 287-UUS A Station communication Table 463: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
  • Page 572: Settings

    Section 14 1MRK 511 287-UUS A Station communication Name Type Description APP12_OP BOOLEAN Apparatus 12 position is open APP12_CL BOOLEAN Apparatus 12 position is closed APP12VAL BOOLEAN Apparatus 12 position is valid APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL...
  • Page 573: Function Block

    Section 14 1MRK 511 287-UUS A Station communication 14.4.2 Function block GOOSEBINRCV BLOCK ^OUT1 OUT1VAL ^OUT2 OUT2VAL ^OUT3 OUT3VAL ^OUT4 OUT4VAL ^OUT5 OUT5VAL ^OUT6 OUT6VAL ^OUT7 OUT7VAL ^OUT8 OUT8VAL ^OUT9 OUT9VAL ^OUT10 OUT10VAL ^OUT11 OUT11VAL ^OUT12 OUT12VAL ^OUT13 OUT13VAL ^OUT14 OUT14VAL ^OUT15 OUT15VAL...
  • Page 574: Settings

    Section 14 1MRK 511 287-UUS A Station communication Name Type Description OUT3 BOOLEAN Binary output 3 OUT3VAL BOOLEAN Valid data on binary output 3 OUT4 BOOLEAN Binary output 4 OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5...
  • Page 575: Operation Principle

    Section 14 1MRK 511 287-UUS A Station communication 14.4.5 Operation principle The OUTxVAL output, where 1≤x≤16, will be HIGH if the incoming message is with valid data. The OUTxVAL output contains both quality validity and communication validity since GOOSEBINRCV function has no COMMVALID output. The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary values.
  • Page 576: Function Block

    Section 14 1MRK 511 287-UUS A Station communication 14.5.3 Function block GOOSEDPRCV BLOCK ^DPOUT DATAVALID COMMVALID TEST IEC10000249-1-en.vsd IEC10000249 V1 EN Figure 256: GOOSEDPRCV function block 14.5.4 Signals Table 468: GOOSEDPRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 469: GOOSEDPRCV Output signals Name...
  • Page 577: Goose Function Block To Receive An Integer Value Gooseintrcv

    Section 14 1MRK 511 287-UUS A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the double point values. The implementation for IEC61850 quality data handling is restricted to a simple level.
  • Page 578: Signals

    Section 14 1MRK 511 287-UUS A Station communication 14.6.4 Signals Table 471: GOOSEINTRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 472: GOOSEINTRCV Output signals Name Type Description INTOUT INTEGER Integer output DATAVALID BOOLEAN Data valid for integer output COMMVALID BOOLEAN Communication valid for integer output...
  • Page 579: Functionality

    Section 14 1MRK 511 287-UUS A Station communication 14.7 GOOSE function block to receive a measurand value GOOSEMVRCV 14.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive a GOOSEMVRCV measurand value 14.7.2 Functionality GOOSEMVRCV is used to receive measured value using IEC61850 protocol via...
  • Page 580: Settings

    Section 14 1MRK 511 287-UUS A Station communication 14.7.5 Settings Table 476: GOOSEMVRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled 14.7.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
  • Page 581: Functionality

    Section 14 1MRK 511 287-UUS A Station communication 14.8.2 Functionality GOOSESPRCV is used to receive a single point value using IEC61850 protocol via GOOSE. 14.8.3 Function block GOOSESPRCV BLOCK ^SPOUT DATAVALID COMMVALID TEST IEC10000248-1-en.vsd IEC10000248 V1 EN Figure 259: GOOSESPRCV function block 14.8.4 Signals Table 477:...
  • Page 582: Iec 60870-5-103 Communication Protocol

    Section 14 1MRK 511 287-UUS A Station communication The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen. The TEST output will go HIGH if the sending IED is in test mode. The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary single point values.
  • Page 583: Settings

    Section 14 1MRK 511 287-UUS A Station communication The function IEC60870-5-103 serial communication for RS485, RS485103, is used to configure the communication parameters for the RS485 serial communication interface. 14.9.2 Settings Table 480: OPTICAL103 Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 584: Iec 61850-8-1 Redundant Station Bus Communication

    Section 14 1MRK 511 287-UUS A Station communication 14.10 IEC 61850-8-1 redundant station bus communication Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number System component for parallel PRPSTATUS redundancy protocol 14.10.1 Functionality Redundant station bus communication according to IEC 62439-3 Edition 2 is available as option in the Customized 650 Ver 1.3 series IEDs, and the selection is made at ordering.
  • Page 585: Function Block

    Section 14 1MRK 511 287-UUS A Station communication Station Control System Redundancy Supervision Data Data Switch A Switch B Data Data COM03 PRPSTATUS IEC13000003-1-en.vsd IEC13000003 V1 EN Figure 260: Redundant station bus 14.10.3 Function block PRPSTATUS LAN1-A LAN1-B IEC13000011-1-en.vsd IEC13000011 V1 EN Figure 261: PRPSTATUS function block Technical manual...
  • Page 586: Setting Parameters

    Section 14 1MRK 511 287-UUS A Station communication Table 482: PRPSTATUS Output signals Name Type Description LAN1-A BOOLEAN LAN1 channel A status LAN1-B BOOLEAN LAN1 channel B status 14.10.4 Setting parameters The PRPSTATUS function has no user settings. However, the redundant communication is configured in the LHMI under Main menu/ Configuration/Communication/TCP-IP configuration/ETHLAN1_AB where Operation mode, IPAddress and IPMask are configured.
  • Page 587: Generic Security Application Component Agsal

    Section 14 1MRK 511 287-UUS A Station communication Name Values (Range) Unit Step Default Description ExtLogSrv3Type Disabled Disabled External log server 3 type ExtLogSrv1Type SYSLOG TCP/IP CEF TCP/IP ExtLogSrv3Port 1 - 65535 External log server 3 port number ExtLogSrv3IP 0 - 18 127.0.0.1 External log server 3 IP-address Address...
  • Page 588: Security Events On Protocols Secalarm

    Section 14 1MRK 511 287-UUS A Station communication 14.13 Security events on protocols SECALARM 14.13.1 Security alarm SECALARM 14.13.2 Signals Table 484: SECALARM Output signals Name Type Description EVENTID INTEGER EventId of the generated security event SEQNUMBER INTEGER Sequence number of the generated security event 14.13.3 Settings Table 485:...
  • Page 589: Self Supervision With Internal Event List

    Section 15 1MRK 511 287-UUS A Basic IED functions Section 15 Basic IED functions 15.1 Self supervision with internal event list 15.1.1 Functionality The Self supervision with internal event list INTERRSIG and SELFSUPEVLST function reacts to internal system events generated by the different built-in self-supervision elements.
  • Page 590: Signals

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.1.2.3 Signals Table 486: INTERRSIG Output signals Name Type Description FAIL BOOLEAN Internal fail WARNING BOOLEAN Internal warning TSYNCERR BOOLEAN Time synchronization error RTCERR BOOLEAN Real time clock error DISABLE BOOLEAN Application Disable 15.1.2.4 Settings...
  • Page 591 Section 15 1MRK 511 287-UUS A Basic IED functions Diagnostics/Internal events or Main menu/Diagnostics/IED status/General. The information from the self-supervision function is also available in the Event Viewer in PCM600. Both events from the Event list and the internal events are listed in time consecutive order in the Event Viewer.
  • Page 592 Section 15 1MRK 511 287-UUS A Basic IED functions LIODEV FAIL LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED SW Watchdog Error Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK GENTS RTC ERROR...
  • Page 593: Internal Signals

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.1.4.1 Internal signals SELFSUPEVLST function provides several status signals, that tells about the condition of the IED. As they provide information about the internal status of the IED, they are also called internal signals.
  • Page 594: Run-Time Model

    Section 15 1MRK 511 287-UUS A Basic IED functions Table 489: Explanations of internal signals Name of signal Reasons for activation Internal Fail This signal will be active if one or more of the following internal signals are active; Real Time Clock Error, Runtime App Error, Runtime Exec Error, SW Watchdog Error, File System Error Internal Warning This signal will be active if one or more of the following internal...
  • Page 595: Technical Data

    Section 15 1MRK 511 287-UUS A Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 265: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
  • Page 596: Time Synchronization

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.2 Time synchronization 15.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a control and a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
  • Page 597: Time Synchronization Via Sntp

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.2.3 Time synchronization via SNTP 15.2.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time synchronization via SNTP SNTP 15.2.3.2 Settings Table 492: SNTP Non group settings (basic) Name Values (Range) Unit...
  • Page 598: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.2.4.2 Settings Table 493: DSTBEGIN Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January March Month in year when daylight time starts February March April June July August September October...
  • Page 599: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.2.5.2 Settings Table 494: DSTEND Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January October Month in year when daylight time ends February March April June July August September October...
  • Page 600: Time Synchronization Via Irig-B

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.2.7 Time synchronization via IRIG-B 15.2.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time synchronization via IRIG-B IRIG-B 15.2.7.2 Settings Table 496: IRIG-B Non group settings (basic) Name Values (Range) Unit...
  • Page 601 Section 15 1MRK 511 287-UUS A Basic IED functions Design of the time system (clock synchronization) External Time tagging and general synchronization synchronization sources Protection Commu Events and control Disabled - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 ANSI09000210-1-en.vsd ANSI09000210 V1 EN Figure 266:...
  • Page 602: Real-Time Clock (Rtc) Operation

    Section 15 1MRK 511 287-UUS A Basic IED functions • The maximum error of the last used synchronization message • The time since the last used synchronization message • The rate accuracy of the internal clock in the function. 15.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second.
  • Page 603: Synchronization Alternatives

    Section 15 1MRK 511 287-UUS A Basic IED functions Time-out on synchronization sources All synchronization interfaces has a time-out and a configured interface must receive time-messages regularly in order not to give an error signal (TSYNCERR). Normally, the time-out is set so that one message can be lost without getting a TSYNCERR, but if more than one message is lost, a TSYNCERR is given.
  • Page 604: Technical Data

    Section 15 1MRK 511 287-UUS A Basic IED functions If the x in 00x is 4, 5, 6 or 7, the time message from IRIG-B contains information of the year. If x is 0, 1, 2 or 3, the information contains only the time within the year, and year information has to come from the tool or local HMI.
  • Page 605: Setting Group Handling Setgrps

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.3.2 Setting group handling SETGRPS 15.3.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Setting group handling SETGRPS 15.3.2.2 Settings Table 498: SETGRPS Non group settings (basic) Name Values (Range) Unit...
  • Page 606: Signals

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.3.3.3 Signals Table 499: ACTVGRP Input signals Name Type Default Description ACTGRP1 BOOLEAN Selects setting group 1 as active ACTGRP2 BOOLEAN Selects setting group 2 as active ACTGRP3 BOOLEAN Selects setting group 3 as active ACTGRP4 BOOLEAN Selects setting group 4 as active...
  • Page 607: Test Mode Functionality Testmode

    Section 15 1MRK 511 287-UUS A Basic IED functions More than one input may be activated at the same time. In such cases the lower order setting group has priority. This means that if for example both group four and group two are set to be activated, group two will be the one activated.
  • Page 608: Functionality

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.4.2 Functionality When the Test mode functionality TESTMODE is activated, all the functions in the IED are automatically blocked. Activated TESTMODE is indicating by a flashing yellow LED on the local HMI. It is then possible to unblock every function(s) individually from the local HMI to perform required tests.
  • Page 609: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.4.5 Settings Table 503: TESTMODE Non group settings (basic) Name Values (Range) Unit Step Default Description TestMode Disabled Disabled Test mode in operation (Enabled) or not Enabled (Disabled) EventDisable Disabled Disabled Event disable during testmode Enabled CmdTestBit...
  • Page 610: Change Lock Function Chnglck

    Section 15 1MRK 511 287-UUS A Basic IED functions When a binary input is used to set the IED in test mode and a parameter, that requires restart of the application, is changed, the IED will re-enter test mode and all functions will be blocked, also functions that were unblocked before the change.
  • Page 611: Function Block

    Section 15 1MRK 511 287-UUS A Basic IED functions logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action. 15.5.3 Function block CHNGLCK...
  • Page 612: Ied Identifiers Terminalid

    Section 15 1MRK 511 287-UUS A Basic IED functions • Clear disturbances • Reset LEDs • Reset counters and other runtime component states • Control operations • Set system time • Enter and exit from test mode • Change of active setting group The binary input signal LOCK controlling the function is defined in ACT or SMT: Binary input Function...
  • Page 613: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.6.3 Settings Table 506: TERMINALID Non group settings (basic) Name Values (Range) Unit Step Default Description StationName 0 - 18 Station name Station name StationNumber 0 - 99999 Station number ObjectName 0 - 18 Object name Object name...
  • Page 614: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.7.3 Settings The function does not have any parameters available in the local HMI or PCM600. 15.8 Primary system values PRIMVAL 15.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 615: Identification

    Section 15 1MRK 511 287-UUS A Basic IED functions The SMAI function blocks for the 650 series of products are possible to set for two cycle times either 5 or 20ms. The function blocks connected to a SMAI function block shall always have the same cycle time as the SMAI block.
  • Page 616: Signals

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.9.4 Signals Table 508: SMAI_20_1 Input signals Name Type Default Description BLOCK BOOLEAN Block group 1 DFTSPFC REAL 20.0 Number of samples per fundamental cycle used for DFT calculation REVROT BOOLEAN Reverse rotation group 1 GRP1_A STRING...
  • Page 617: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions Table 511: SMAI_20_12 Output signals Name Type Description AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs GROUP SIGNAL Quantity connected to the first analog input GROUP SIGNAL Quantity connected to the second analog input GROUP SIGNAL Quantity connected to the third analog input GROUP SIGNAL...
  • Page 618 Section 15 1MRK 511 287-UUS A Basic IED functions Table 513: SMAI_20_1 Non group settings (advanced) Name Values (Range) Unit Step Default Description Negation Disabled Disabled Negation NegateN Negate3Ph Negate3Ph+N MinValFreqMeas 5 - 200 Limit for frequency calculation in % of VBase Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible.
  • Page 619: Operation Principle

    Section 15 1MRK 511 287-UUS A Basic IED functions Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible. This means that the minimum level for current amplitude is based on VBase. For example, if VBase is 20000, the minimum amplitude for current is 20000 * 10% = 2000.
  • Page 620 Section 15 1MRK 511 287-UUS A Basic IED functions • It is not mandatory to connect all the inputs of SMAI function. However, it is very important that same set of three phase analog signals should be connected to one SMAI function.
  • Page 621 Section 15 1MRK 511 287-UUS A Basic IED functions set system frequency. DFTReference set to DFTRefGrpX uses DFT reference from the selected group block, when own group selected adaptive DFT reference will be used based on the calculated signal frequency from own group. DFTReference set to External DFT Ref will use reference based on input signal DFTSPFC.
  • Page 622 Section 15 1MRK 511 287-UUS A Basic IED functions Task time group 1 Task time group 2 (5ms) (20ms) SMAI_20_1 SMAI_20_1 BLOCK SPFCOUT BLOCK SPFCOUT DFTSPFC AI3P DFTSPFC AI3P REVROT REVROT ^GRP1_A ^GRP1_A ^GRP1_B ^GRP1_B ^GRP1_C ^GRP1_C ^GRP1_N ^GRP1_N Task time group 1 (5ms) Task time group 2 (20ms) SMAI instance 3 phase group SMAI instance 3 phase group...
  • Page 623: Summation Block 3 Phase 3Phsum

    Section 15 1MRK 511 287-UUS A Basic IED functions For SMAI_20_1:2 to SMAI_20_12:2 DFTReference set to External DFT ref to use DFTSPFC input as reference. 15.10 Summation block 3 phase 3PHSUM 15.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 624: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions Table 517: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
  • Page 625: Identification

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 15.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
  • Page 626: Functionality

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.12.2 Functionality To safeguard the interests of our customers, both the IED and the tools that are accessing the IED are protected, by means of authorization handling. The authorization handling of the IED and the PCM600 is implemented at both access points to the IED: •...
  • Page 627: Operation Principle

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.12.4 Operation principle There are different levels (or types) of users that can access or operate different areas of the IED and tools functionality. The pre-defined user types are given in Table 521.
  • Page 628: Authority Management Authman

    Section 15 1MRK 511 287-UUS A Basic IED functions If one or more users are created with the IED User Management and written to the IED, then, when a user attempts a Log on by pressing the key or when the user attempts to perform an operation that is password protected, the Log on window opens.
  • Page 629: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.13.3 Settings Table 522: AUTHMAN Non group settings (basic) Name Values (Range) Unit Step Default Description MaintMenuEnable Maintenance menu enabled AuthTimeout 10 Min 10 Min Authority blocking timeout 20 Min 30 Min 40 Min 50 Min 60 Min...
  • Page 630: Settings

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.14.3 Settings Table 523: FTPACCS Non group settings (basic) Name Values (Range) Unit Step Default Description PortSelection None Front+LAN1 Port selection for communication Front LAN1 Front+LAN1 SSLMode FTP+FTPS FTPS Support for AUTH TLS/SSL FTPS TCPPortFTP 1 - 65535...
  • Page 631: Signals

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.15.4 Signals Table 524: ATHSTAT Output signals Name Type Description USRBLKED BOOLEAN At least one user is blocked by invalid password LOGGEDON BOOLEAN At least one user is logged on 15.15.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600)
  • Page 632: Denial Of Service, Frame Rate Control For Front Port Dosfrnt

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.16.2 Denial of service, frame rate control for front port DOSFRNT 15.16.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Denial of service, frame rate control for DOSFRNT front port 15.16.2.2...
  • Page 633: Monitored Data

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.16.2.5 Monitored data Table 526: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state 1=Normal 2=Throttle 3=DiscardLow 4=DiscardAll 5=StopPoll Quota INTEGER Quota level in percent 0-100 IPPackRecNorm INTEGER Number of IP packets...
  • Page 634: Signals

    Section 15 1MRK 511 287-UUS A Basic IED functions 15.16.3.3 Signals Table 527: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state ALARM BOOLEAN Frame rate is higher than throttle state 15.16.3.4 Settings The function does not have any parameters available in the local HMI or PCM600.
  • Page 635 Section 15 1MRK 511 287-UUS A Basic IED functions • LINKUP indicates the Ethernet link status • WARNING indicates that communication (frame rate) is higher than normal • ALARM indicates that the IED limits communication Technical manual...
  • Page 637: Protective Ground Connections

    Section 16 1MRK 511 287-UUS A IED physical connections Section 16 IED physical connections 16.1 Protective ground connections The IED shall be grounded with a 6 Gauge flat copper cable. The ground lead should be as short as possible, less than 59.06 inches (1500 mm).
  • Page 638: Inputs

    Section 16 1MRK 511 287-UUS A IED physical connections 16.2 Inputs 16.2.1 Measuring inputs Table 529: Analog input modules TRM Terminal 6I + 4U 8I + 2U 4I + 1I + 5U 4I + 6U X101-1, 2 1/5A 1/5A 1/5A 1/5A X101-3, 4 1/5A...
  • Page 639: Auxiliary Supply Voltage Input

    Section 16 1MRK 511 287-UUS A IED physical connections 16.2.2 Auxiliary supply voltage input The auxiliary voltage of the IED is connected to terminals X420-1 and X420-2/3. The terminals used depend on the power supply. The permitted auxiliary voltage range of the IED is marked on top of the IED's LHMI. Table 531: Auxiliary voltage supply of 110...250 V DC or 100...240 V AC Case...
  • Page 640 Section 16 1MRK 511 287-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X304-6 Binary input 4 + COM_101 X304-7 Binary input 5 + COM_101 X304-8 Binary input 6 + COM_101 X304-9 Common - for inputs 7-9 X304-10 Binary input 7 + COM_101...
  • Page 641 Section 16 1MRK 511 287-UUS A IED physical connections Table 536: Binary inputs X329, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X329-1 - for input 1 BIO_4 X329-2 Binary input 1 + BIO_4 X329-3 X329-4 Common - for inputs 2-3 X329-5 Binary input 2 +...
  • Page 642 Section 16 1MRK 511 287-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X334-11 X334-12 Common - for inputs 6-7 X334-13 Binary input 6 + BIO_5 X334-14 Binary input 7 + BIO_5 X334-15 X334-16 Common - for inputs 8-9 X334-17 Binary input 8 + BIO_5...
  • Page 643: Outputs

    Section 16 1MRK 511 287-UUS A IED physical connections 16.3 Outputs 16.3.1 Outputs for tripping, controlling and signalling Output contacts PO1, PO2 and PO3 are power output contacts used, for example, for controlling circuit breakers. Each signal connector terminal is connected with one 14 or 16 Gauge wire. Use 12 or 14 Gauge wire for CB trip circuit.
  • Page 644 Section 16 1MRK 511 287-UUS A IED physical connections Table 540: Output contacts X321, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X321-1 Power output 1, normally open BIO_3 BO1_PO X321-2 X321-3 Power output 2, normally open BIO_3 BO2_PO X321-4...
  • Page 645: Outputs For Signalling

    Section 16 1MRK 511 287-UUS A IED physical connections Table 543: Output contacts X336, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X336-1 Power output 1, normally open BIO_6 BO1_PO X336-2 X336-3 Power output 2, normally open BIO_6 BO2_PO X336-4...
  • Page 646 Section 16 1MRK 511 287-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X321-12 Signal output 3 X321-13 Signal output 4, normally open BIO_3 BO7_SO X321-14 Signal output 5, normally open BIO_3 BO8_SO X321-15 Signal outputs 4 and 5, common X321-16 Signal output 6, normally closed BIO_3...
  • Page 647 Section 16 1MRK 511 287-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X331-12 Signal output 3 X331-13 Signal output 4, normally open BIO_5 BO7_SO X331-14 Signal output 5, normally open BIO_5 BO8_SO X331-15 Signal outputs 4 and 5, common X331-16 Signal output 6, normally closed BIO_5...
  • Page 648: Communication Connections

    Section 16 1MRK 511 287-UUS A IED physical connections Table 549: IRF contact X319 Case Terminal Description 3U full 19” X319-1 Closed; no IRF, and V connected X319-2 Closed; IRF, or V disconnected X319-3 IRF, common 16.4 Communication connections The IED's LHMI is provided with an RJ-45 connector. The connector is intended for configuration and setting purposes.
  • Page 649: Station Communication Rear Connection

    Section 16 1MRK 511 287-UUS A IED physical connections 16.4.2 Station communication rear connection The default IP address of the IED through the Ethernet connection is 192.168.1.10. The physical connector is X1/LAN1. The interface speed is 100 Mbps for the 100BASE-FX LC alternative.
  • Page 650: Communication Interfaces And Protocols

    ● ● ● = Supported 16.4.6 Recommended industrial Ethernet switches ABB recommends ABB industrial Ethernet switches. 16.5 Connection diagrams The connection diagrams are delivered on the IED Connectivity package DVD as part of the product delivery. The latest versions of the connection diagrams can be downloaded from http://www.abb.com/substationautomation.
  • Page 651: Dimensions

    Section 17 1MRK 511 287-UUS A Technical data Section 17 Technical data 17.1 Dimensions Table 551: Dimensions of the IED - 3U full 19" rack Description Value Width 17.48 inches (444 mm) Height 5.20 inches (132 mm), 3U Depth 9.82 inches (249.5 mm) Weight box <22.04 lbs (10 kg) 17.2...
  • Page 652: Energizing Inputs

    Section 17 1MRK 511 287-UUS A Technical data 17.3 Energizing inputs Table 553: TRM — Energizing quantities, rated values and limits for transformer inputs Description Value Frequency Rated frequency f 50 or 60 Hz Operating range ± 10% Current inputs Rated current I 0.1 or 0.5 A 1 or 5 A...
  • Page 653: Binary Inputs

    Section 17 1MRK 511 287-UUS A Technical data 17.4 Binary inputs Table 554: Binary inputs Description Value Operating range Maximum input voltage 300 V DC Rated voltage 24...250 V DC Current drain 1.6...1.8 mA Power consumption/input <0.38 W Threshold voltage 15...221 V DC (parametrizable in the range in steps of 1% of the rated voltage) 17.5...
  • Page 654: Data Communication Interfaces

    Section 17 1MRK 511 287-UUS A Technical data Table 557: Power output relays with TCM function Description Value Rated voltage 250 V DC Continuous contact carry Make and carry for 3.0 s 15 A Make and carry for 0.5 s 30 A Breaking capacity when the control-circuit time ≤1 A/≤0.3 A/≤0.1 A...
  • Page 655: Enclosure Class

    Section 17 1MRK 511 287-UUS A Technical data Table 561: IRIG-B Type Value Accuracy Input impedance 430 Ohm Minimum input voltage 4.3 V HIGH Maximum input voltage 0.8 V Table 562: EIA-485 interface Type Value Conditions Minimum differential 1.5 V –...
  • Page 656: Ingress Protection

    Section 17 1MRK 511 287-UUS A Technical data 17.9 Ingress protection Table 565: Ingress protection Description Value IED front IP 54 IED rear IP 20 IED sides IP 40 IED top IP 40 IED bottom IP 20 17.10 Environmental conditions and tests Table 566: Environmental conditions Description...
  • Page 657: Electromagnetic Compatibility Tests

    Section 18 1MRK 511 287-UUS A IED and functionality tests Section 18 IED and functionality tests 18.1 Electromagnetic compatibility tests Table 568: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2012...
  • Page 658 Section 18 1MRK 511 287-UUS A IED and functionality tests Description Type test value Reference Power frequency (50 Hz) IEC 61000-4-8, level 5 magnetic field • 1000 A/m • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Damped oscillatory magnetic 100A/m, 100 kHz and 1MHz...
  • Page 659: Insulation Tests

    Section 18 1MRK 511 287-UUS A IED and functionality tests Description Type test value Reference 88 – 216 MHz < 43,52 dB(µV/m) quasi peak, measured at 10 m distance 216 – 960 MHz < 46,44 dB(µV/m) quasi peak, measured at 10 m distance 960 –...
  • Page 660: Product Safety

    Section 18 1MRK 511 287-UUS A IED and functionality tests Description Reference Requirement Shock withstand test IEC 60255-21-2 Class 1 Bump test IEC 60255-21-2 Class 1 Seismic test IEC 60255-21-3 Class 2 18.4 Product safety Table 571: Product safety Description Reference LV directive 2006/95/EC...
  • Page 661: Section 19 Time Inverse Characteristics

    Section 19 1MRK 511 287-UUS A Time inverse characteristics Section 19 Time inverse characteristics 19.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used. The simplest way to do this is to use definite time delay.
  • Page 662 Section 19 1MRK 511 287-UUS A Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 283: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections.
  • Page 663 Section 19 1MRK 511 287-UUS A Time inverse characteristics Feeder Time axis en05000132_ansi.vsd ANSI05000132 V1 EN Figure 284: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
  • Page 664: Operation Principle

    Section 19 1MRK 511 287-UUS A Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, picks up and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 665 Section 19 1MRK 511 287-UUS A Time inverse characteristics For inverse time characteristics a time will be initiated when the current reaches the set pickup level. From the general expression of the characteristic the following can be seen: æ ö æ...
  • Page 666 Section 19 1MRK 511 287-UUS A Time inverse characteristics For the IEC curves there is also a setting of the minimum time-lag of operation, see figure 285. Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 285: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current pickup value.
  • Page 667: Inverse Time Characteristics

    Section 19 1MRK 511 287-UUS A Time inverse characteristics æ ö ç ÷ ç ÷ Pickupn ç ÷ ç ÷ × 0.339 0.235 è ø (Equation 80) EQUATION1647 V1 EN where: Pickupn is the set pickup current for step n is set time multiplier for step n is the measured current The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection...
  • Page 668 Section 19 1MRK 511 287-UUS A Time inverse characteristics Table 573: ANSI Inverse time characteristics Function Range or value Accuracy Operating characteristic: td = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1651 V1 EN I = I measured ANSI Extremely Inverse...
  • Page 669 Section 19 1MRK 511 287-UUS A Time inverse characteristics Table 575: RI and RD type inverse time characteristics Function Range or value Accuracy RI type inverse characteristic td = (0.05-999) in steps of 0.01 × 0.236 0.339 EQUATION1656 V1 EN I = I measured RD type logarithmic inverse characteristic...
  • Page 670 Section 19 1MRK 511 287-UUS A Time inverse characteristics Table 577: Inverse time characteristics for undervoltage protection Function Range or value Accuracy Type A curve: td = (0.05-1.10) in steps of ±5% +60 ms 0.01 æ ö VPickup V ç ÷...
  • Page 671 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070750 V2 EN Figure 286: ANSI Extremely inverse time characteristics Technical manual...
  • Page 672 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070751 V2 EN Figure 287: ANSI Very inverse time characteristics Technical manual...
  • Page 673 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070752 V2 EN Figure 288: ANSI Normal inverse time characteristics Technical manual...
  • Page 674 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070753 V2 EN Figure 289: ANSI Moderately inverse time characteristics Technical manual...
  • Page 675 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070817 V2 EN Figure 290: ANSI Long time extremely inverse time characteristics Technical manual...
  • Page 676 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070818 V2 EN Figure 291: ANSI Long time very inverse time characteristics Technical manual...
  • Page 677 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070819 V2 EN Figure 292: ANSI Long time inverse time characteristics Technical manual...
  • Page 678 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070820 V2 EN Figure 293: IEC Normal inverse time characteristics Technical manual...
  • Page 679 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070821 V2 EN Figure 294: IEC Very inverse time characteristics Technical manual...
  • Page 680 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070822 V2 EN Figure 295: IEC Inverse time characteristics Technical manual...
  • Page 681 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070823 V2 EN Figure 296: IEC Extremely inverse time characteristics Technical manual...
  • Page 682 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070824 V2 EN Figure 297: IEC Short time inverse time characteristics Technical manual...
  • Page 683 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070825 V2 EN Figure 298: IEC Long time inverse time characteristics Technical manual...
  • Page 684 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070826 V2 EN Figure 299: RI-type inverse time characteristics Technical manual...
  • Page 685 Section 19 1MRK 511 287-UUS A Time inverse characteristics A070827 V2 EN Figure 300: RD-type inverse time characteristics Technical manual...
  • Page 686 Section 19 1MRK 511 287-UUS A Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 301: Inverse curve A characteristic of overvoltage protection Technical manual...
  • Page 687 Section 19 1MRK 511 287-UUS A Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 302: Inverse curve B characteristic of overvoltage protection Technical manual...
  • Page 688 Section 19 1MRK 511 287-UUS A Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 303: Inverse curve C characteristic of overvoltage protection Technical manual...
  • Page 689 Section 19 1MRK 511 287-UUS A Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 304: Inverse curve A characteristic of undervoltage protection Technical manual...
  • Page 690 Section 19 1MRK 511 287-UUS A Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 305: Inverse curve B characteristic of undervoltage protection Technical manual...
  • Page 691: Section 20 Glossary

    Section 20 1MRK 511 287-UUS A Glossary Section 20 Glossary Alternating current Actual channel Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection ASDU Application service data unit...
  • Page 692 Section 20 1MRK 511 287-UUS A Glossary COMTRADE Standard Common Format for Transient Data Exchange format for Disturbance recorder according to IEEE/ANSI C37.111, 1999 / IEC60255-24 Cause of transmission Central processing unit Carrier receive Cyclic redundancy check CROB Control relay output block Carrier send Current transformer Communication unit...
  • Page 693 Section 20 1MRK 511 287-UUS A Glossary Electromagnetic interference EnFP End fault protection Enhanced performance architecture Electrostatic discharge F-SMA Type of optical fibre connector Fault number Flow control bit; Frame count bit FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer...
  • Page 694 Section 20 1MRK 511 287-UUS A Glossary IEC 60870-5-103 Communication standard for protective equipment. A serial master/slave protocol for point-to-point communication IEC 61850 Substation automation communication standard IEC 61850–8–1 Communication protocol standard IEEE Institute of Electrical and Electronics Engineers IEEE 802.12 A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable IEEE P1386.1...
  • Page 695 Section 20 1MRK 511 287-UUS A Glossary IRIG-B: InterRange Instrumentation Group Time code format B, standard 200 International Telecommunications Union Local area network Liquid crystal display Local detection device Light-emitting diode LON network tool Miniature circuit breaker MVAL Value of measurement National Control Centre Number of grid faults Numerical module...
  • Page 696 Section 20 1MRK 511 287-UUS A Glossary PT ratio Potential transformer or voltage transformer ratio PUTT Permissive underreach transfer trip Relay characteristic angle RISC Reduced instruction set computer RMS value Root mean square value RS422 A balanced serial interface for the transmission of digital data in point-to-point connections RS485 Serial link according to EIA standard RS485...
  • Page 697 Section 20 1MRK 511 287-UUS A Glossary Trip coil Trip circuit supervision Transmission control protocol. The most common transport layer protocol used on Ethernet and the Internet. TCP/IP Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix.
  • Page 698 Section 20 1MRK 511 287-UUS A Glossary Coordinated Universal Time is expressed using a 24-hour clock, and uses the Gregorian calendar. It is used for aeroplane and ship navigation, where it is also sometimes known by the military name, "Zulu time." "Zulu" in the phonetic alphabet stands for "Z", which stands for longitude zero.
  • Page 700 Any reproduction, Phone +46 (0) 21 32 50 00 disclosure to third parties or utilization of its contents – in whole or in part – is forbidden without prior written consent of ABB AB. www.abb.com/protection-control © Copyright 2013 ABB.

Table of Contents