hit counter script
ABB RELION REC615 Technical Manual

ABB RELION REC615 Technical Manual

Grid automation
Hide thumbs Also See for RELION REC615:
Table of Contents

Advertisement

Quick Links

®
RELION
PRODUCT FAMILY
Grid Automation REC615 and RER615
Technical Manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB RELION REC615

  • Page 1 — ® RELION PRODUCT FAMILY Grid Automation REC615 and RER615 Technical Manual...
  • Page 3 Document ID: 1MRS758755 Issued: 2023-03-07 Revision: C Product version: 2.0.3 © Copyright 2023 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.
  • Page 5 Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
  • Page 6 Conformity This product complies with following directive and regulations. Directives of the European parliament and of the council: • Electromagnetic compatibility (EMC) Directive 2014/30/EU • Low-voltage Directive 2014/35/EU • RoHS Directive 2011/65/EU UK legislations: • Electromagnetic Compatibility Regulations 2016 • Electrical Equipment (Safety) Regulations 2016 •...
  • Page 7: Table Of Contents

    Contents Contents Introduction..................... 18 This manual.............................18 Intended audience..........................18 Product documentation........................19 1.3.1 Product documentation set....................19 1.3.2 Document revision history....................20 1.3.3 Related documentation....................... 20 Symbols and conventions........................21 1.4.1 Symbols........................... 21 1.4.2 Document conventions......................21 1.4.3 Functions, codes and symbols....................22 REC615 and RER615 overview..............
  • Page 8 Contents 3.1.8 Binary input settings in card location Xnnn..............47 3.1.9 Ethernet front port settings....................47 3.1.10 Ethernet rear port settings....................47 3.1.11 General system settings......................48 3.1.12 HMI settings...........................49 3.1.13 IEC 60870-5-101/104 settings.................... 49 3.1.14 Non group settings.......................50 3.1.15 Modbus settings........................52 3.1.16 DNP3 settings........................
  • Page 9 Contents 3.11.1 Binary input filter time......................91 3.11.2 Binary input inversion......................92 3.11.3 Oscillation suppression......................92 3.12 Binary outputs............................93 3.12.1 Power output contacts......................93 3.12.2 Signal output contacts......................96 3.13 RTD/mA inputs............................99 3.13.1 Functionality.......................... 99 3.13.2 Operation principle.......................99 3.13.3 Signals............................110 3.13.4 Settings..........................
  • Page 10 Contents 3.17.8 Move (8 pcs) MVGAPC ....................... 160 3.17.9 Integer value move MVI4GAPC..................161 3.17.10 Analog value scaling SCA4GAPC ..................162 3.17.11 Local/remote control function block CONTROL............165 3.17.12 Generic control point (16 pcs) SPCGAPC ................ 172 3.17.13 Remote generic control points SPCRGAPC..............178 3.17.14 Local generic control points SPCLGAPC.................
  • Page 11 Contents 4.4.5 Positive-sequence undervoltage protection PSPTUV..........444 Frequency protection........................448 4.5.1 Frequency protection FRPFRQ..................448 4.5.2 Load-shedding and restoration LSHDPFRQ..............456 Power protection..........................467 4.6.1 Three-phase power directional element DPSRDIR............467 Multipurpose protection MAPGAPC....................471 4.7.1 Identification........................471 4.7.2 Function block........................471 4.7.3 Functionality.........................471 4.7.4 Operation principle......................
  • Page 12 Contents 5.3.4 Operation principle......................491 5.3.5 Application........................... 493 5.3.6 Signals...........................494 5.3.7 Settings..........................495 5.3.8 Monitored data........................495 5.3.9 Technical revision history....................495 Fault locator SCEFRFLO........................496 5.4.1 Identification........................496 5.4.2 Function block........................496 5.4.3 Functionality........................496 5.4.4 Operation principle......................497 5.4.5 Application..........................515 5.4.6 Signals........................... 516 5.4.7 Settings..........................517 5.4.8...
  • Page 13 Contents 6.3.5 Application........................... 543 6.3.6 Signals...........................543 6.3.7 Settings..........................544 6.3.8 Monitored data........................545 6.3.9 Technical data ........................545 6.3.10 Technical revision history....................545 Voltage presence PHSVPR......................... 546 6.4.1 Identification........................546 6.4.2 Function block........................546 6.4.3 Functionality........................546 6.4.4 Operation principle......................546 6.4.5 Application........................... 548 6.4.6 Signals...........................548 6.4.7...
  • Page 14 Contents 8.1.12 Single-phase power and energy measurement SPEMMXU........606 Disturbance recorder RDRE....................... 615 8.2.1 Identification........................615 8.2.2 Functionality.........................615 8.2.3 Configuration........................620 8.2.4 Application..........................621 8.2.5 Settings..........................622 8.2.6 Monitored data........................625 8.2.7 Technical revision history....................625 Control functions.................. 627 Circuit-breaker control CBXCBR and Disconnector control DCXSWI........627 9.1.1 Identification........................627 9.1.2...
  • Page 15 Contents 9.4.3 Functionality........................656 9.4.4 Operation principle......................658 9.4.5 Counters..........................671 9.4.6 Application..........................672 9.4.7 Signals...........................683 9.4.8 Settings..........................684 9.4.9 Monitored data........................687 9.4.10 Technical data ........................689 9.4.11 Technical revision history....................690 Automatic transfer switch ATSABTC....................690 9.5.1 Identification........................690 9.5.2 Function block........................690 9.5.3 Functionality........................
  • Page 16 Contents 10.3.4 Operation principle......................709 10.3.5 Recorded data........................717 10.3.6 Application..........................719 10.3.7 Signals............................721 10.3.8 Settings..........................721 10.3.9 Monitored data........................723 10.3.10 Technical data ........................727 10.4 Voltage unbalance VSQVUB.......................728 10.4.1 Identification........................728 10.4.2 Function block........................728 10.4.3 Functionality.........................728 10.4.4 Operation principle......................729 10.4.5 Application..........................733 10.4.6...
  • Page 17 Contents 13.4.1 Ethernet RJ-45 front connection..................837 13.4.2 Ethernet rear connections....................837 13.4.3 EIA-232 serial rear connection..................837 13.4.4 EIA-485 serial rear connection..................838 13.4.5 Optical ST serial rear connection..................838 13.4.6 Communication interfaces and protocols ..............838 13.4.7 Rear communication modules..................839 14 Technical data..................851 14.1 Dimensions............................
  • Page 18: Introduction

    Introduction 1MRS758755 C Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 19: Product Documentation

    Communication protocol manual IEC 61850 Engineering guide Point list manual Figure 1: The intended use of documents during the product life cycle Product series- and product-specific manuals can be downloaded from http://www.abb.com/relion the ABB Web site REC615 & RER615 Technical Manual...
  • Page 20: Document Revision History

    B/2019-05-31 2.0.3 Content updated to correspond to the product series version C/2023-03-07 2.0.3 Content updated www.abb.com/ Download the latest documents from the ABB Web site substationautomation 1.3.3 Related documentation Name of the document Document ID Modbus Communication Protocol Manual 1MRS758758...
  • Page 21: Symbols And Conventions

    1MRS758755 C Introduction Symbols and conventions 1.4.1 Symbols The electrical warning icon indicates the presence of a hazard which could result in electrical shock. The warning icon indicates the presence of a hazard which could result in personal injury. The caution icon indicates important information or warning related to the concept discussed in the text.
  • Page 22: Functions, Codes And Symbols

    Introduction 1MRS758755 C 1.4.3 Functions, codes and symbols All available functions are listed in the table. All of them may not be applicable to all products. Table 1: Functions included in the relays Function IEC 61850 IEC 60617 IEC-ANSI Protection Three-phase non-directional overcurrent protection, low stage, in- PHLPTOC1 3I>...
  • Page 23 1MRS758755 C Introduction Function IEC 61850 IEC 60617 IEC-ANSI Directional earth-fault protection, high stage, instance 1 DEFHPDEF1 Io>> -> (1) 67N-2 (1) Directional earth-fault protection, high stage, instance 2 DEFHPDEF2 Io>> -> (2) 67N-2 (2) Directional earth-fault protection, high stage, instance 3 DEFHPDEF3 Io>>...
  • Page 24 Introduction 1MRS758755 C Function IEC 61850 IEC 60617 IEC-ANSI Three-phase inrush detector, instance 1 INRPHAR1 3I2f> (1) 68 (1) Master trip, instance 1 TRPPTRC1 Master Trip (1) 94/86 (1) Master trip, instance 2 TRPPTRC2 Master Trip (2) 94/86 (2) Multipurpose protection, instance 1 MAPGAPC1 MAP (1) MAP (1)
  • Page 25 1MRS758755 C Introduction Function IEC 61850 IEC 60617 IEC-ANSI Earthing switch indication, instance 5 ESSXSWI5 I <-> O ES (5) I <-> O ES (5) Earthing switch indication, instance 6 ESSXSWI6 I <-> O ES (6) I <-> O ES (6) Earthing switch indication, instance 7 ESSXSWI7 I <->...
  • Page 26 Introduction 1MRS758755 C Function IEC 61850 IEC 60617 IEC-ANSI Other Minimum pulse timer (2 pcs), instance 1 TPGAPC1 TP (1) TP (1) Minimum pulse timer (2 pcs), instance 2 TPGAPC2 TP (2) TP (2) Minimum pulse timer (2 pcs, second resolution), instance 1 TPSGAPC1 TPS (1) TPS (1)
  • Page 27 1MRS758755 C Introduction Function IEC 61850 IEC 60617 IEC-ANSI Analog value scaling, instance 9 SCA4GAPC9 SCA4 (9) SCA4 (9) Analog value scaling, instance 10 SCA4GAPC10 SCA4 (10) SCA4 (10) Analog value scaling, instance 11 SCA4GAPC11 SCA4 (11) SCA4 (11) Analog value scaling, instance 12 SCA4GAPC12 SCA4 (12) SCA4 (12)
  • Page 28: Rec615 And Rer615 Overview

    REC615 and RER615 overview 1MRS758755 C REC615 and RER615 overview Overview REC615 and RER615 relays are designed for remote control and monitoring, protection, fault indication, power quality analysis and automation in medium- voltage secondary distribution systems. The design of the relays has been guided by the IEC 61850 standard for communication and interoperability of substation automation devices.
  • Page 29: Local Hmi

    • Protection and Control IED Manager PCM600 Ver.2.9 or later • REC615 Connectivity Package Ver.2.0 or later • RER615 Connectivity Package Ver.2.0 or later Download connectivity packages from the ABB Web site or directly with Update Manager in PCM600. Local HMI The LHMI is used for setting, monitoring and controlling the protection relay.
  • Page 30: Leds

    REC615 and RER615 overview 1MRS758755 C 2.2.1 Display The LHMI includes a graphical display that supports two character sizes. The character size depends on the selected language. The amount of characters and rows fitting the view depends on the character size. Table 2: Small display Character size Rows in the view...
  • Page 31: Web Hmi

    1MRS758755 C REC615 and RER615 overview 2.2.3 Keypad The LHMI keypad contains push buttons which are used to navigate in different views or menus. Using the push buttons, open or close commands can be given to objects in the primary circuit, for example, a circuit breaker, a contactor or a disconnector.
  • Page 32: Authorization

    REC615 and RER615 overview 1MRS758755 C Web server is forced to take a secured (HTTPS) connection to WHMI using TLS encryption. The WHMI is verified with Internet Explorer 8.0, 9.0, 10.0 and 11.0. WHMI is disabled by default. WHMI offers several functions. •...
  • Page 33: Audit Trail

    1MRS758755 C REC615 and RER615 overview The default passwords in the protection relay delivered from the factory can be changed with Administrator user rights. User authorization is disabled by default for LHMI but WHMI always uses authorization. Table 4: Predefined user categories Username User rights VIEWER...
  • Page 34 REC615 and RER615 overview 1MRS758755 C Table 5: Audit trail events Audit trail event Description Configuration change Configuration files changed Firmware change Firmware changed Firmware change fail Firmware change failed Attached to retrofit test case Unit has been attached to retrofit case Removed from retrofit test case Removed from retrofit test case Setting group remote...
  • Page 35: Communication

    1MRS758755 C REC615 and RER615 overview Table 6: Comparison of authority logging levels Audit trail event Authority logging level None Configura- Setting Setting Settings tion change group group, edit control Configuration change ● ● ● ● ● Firmware change ● ●...
  • Page 36: Self-Healing Ethernet Ring

    REC615 and RER615 overview 1MRS758755 C the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard. The protection relay can support five simultaneous clients. If PCM600 reserves one client connection, only four client connections are left, for example, for IEC 61850 and Modbus.
  • Page 37: Ethernet Redundancy

    1MRS758755 C REC615 and RER615 overview fast horizontal communication, the ring size is limited to 30 protection relays. 2.5.2 Ethernet redundancy IEC 61850 specifies a network redundancy scheme that improves the system availability for substation communication. It is based on two complementary protocols defined in the IEC 62439-3:2012 standard: parallel redundancy protocol PRP and high-availability seamless redundancy HSR protocol.
  • Page 38 REC615 and RER615 overview 1MRS758755 C COM600 SCADA Ethernet switch Ethernet switch IEC 61850 PRP Figure 7: PRP solution In case a laptop or a PC workstation is connected as a non-PRP node to one of the PRP networks, LAN A or LAN B, it is recommended to use a redundancy box device or an Ethernet switch with similar functionality between the PRP network and SAN to remove additional PRP information from the Ethernet frames.
  • Page 39: Process Bus

    1MRS758755 C REC615 and RER615 overview Figure 8: HSR solution 2.5.3 Process bus Process bus IEC 61850-9-2 defines the transmission of Sampled Measured Values within the substation automation system. International Users Group created a guideline IEC 61850-9-2 LE that defines an application profile of IEC 61850-9-2 to facilitate implementation and enable interoperability.
  • Page 40 REC615 and RER615 overview 1MRS758755 C Common Ethernet Station bus (IEC 61850-8-1), process bus (IEC 61850-9-2 LE) and IEEE 1588 v2 time synchronization Figure 9: Process bus application of voltage sharing and synchrocheck REC615 and RER615 support IEC 61850 process bus with sampled values of analog currents and voltages.
  • Page 41: Secure Communication

    1MRS758755 C REC615 and RER615 overview Primary Secondary IEEE 1588 v2 IEEE 1588 v2 master clock master clock (optional) Managed HSR Managed HSR Ethernet Ethernet switch switch IEC 61850 Backup 1588 master clock Figure 10: Example network topology with process bus, redundancy and IEEE 1588 v2 time synchronization The process bus option is available for REC615 and RER615 protection relays equipped with phase voltage inputs.
  • Page 42: Basic Functions

    Basic functions 1MRS758755 C Basic functions General parameters 3.1.1 Analog input settings, phase currents Table 7: Analog input settings, phase currents Parameter Values (Range) Unit Step Default Description Primary current 1.0...6000.0 100.0 Rated primary cur- rent Secondary current 2=1A Rated secondary 2=1A current 3=5A...
  • Page 43: Analog Input Settings, Residual Current

    1MRS758755 C Basic functions 3.1.2 Analog input settings, residual current Table 8: Analog input settings, residual current Parameter Values (Range) Unit Step Default Description Primary current 1.0...6000.0 100.0 Primary current Secondary current 2=1A Secondary current 1=0.2A 2=1A 3=5A Amplitude Corr 0.9000...1.1000 0.0001 1.0000...
  • Page 44 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Amplitude Corr A 0.9000...1.1000 0.0001 1.0000 Phase A Voltage phasor magnitude correction of an external voltage transformer Amplitude Corr B 0.9000...1.1000 0.0001 1.0000 Phase B Voltage phasor magnitude correction of an external voltage transformer Amplitude Corr C 0.9000...1.1000...
  • Page 45: Authorization Settings

    1MRS758755 C Basic functions 3.1.5 Authorization settings Table 11: Authorization settings Parameter Values (Range) Unit Step Default Description Remote Update 0=Disable Remote update 0=Disable 1=Enable Secure Communi- 1=True Secure Communi- 0=False cation cation 1=True Authority logging 1=None Authority logging 1=None level 2=Configuration change...
  • Page 46: Binary Input Settings

    Basic functions 1MRS758755 C 3.1.6 Binary input settings Table 12: Binary input settings Parameter Values (Range) Unit Step Default Description Threshold voltage 16...176 Binary input threshold voltage Input osc. level 2...50 events/s Binary input oscil- lation suppression threshold Input osc. hyst 2...50 events/s Binary input oscil-...
  • Page 47: Binary Input Settings In Card Location Xnnn

    1MRS758755 C Basic functions 3.1.8 Binary input settings in card location Xnnn Table 15: Binary input settings in card location Xnnn Name Value Unit Step Default Input m filter time 5…1000 Input m inversion 0=False 0= False 1= True 3.1.9 Ethernet front port settings Table 16: Ethernet front port settings Parameter...
  • Page 48: General System Settings

    Basic functions 1MRS758755 C 3.1.11 General system settings Table 18: General system settings Parameter Values (Range) Unit Step Default Description Rated frequency 1=50Hz Rated frequency of 1=50Hz the network 2=60Hz Phase rotation 1=ABC Phase rotation or- 1=ABC 2=ACB Blocking mode 1=Freeze timer Behaviour for func- 1=Freeze timer...
  • Page 49: Hmi Settings

    1MRS758755 C Basic functions 3.1.12 HMI settings Table 19: HMI settings Parameter Values (Range) Unit Step Default Description FB naming conven- 1=IEC61850 FB naming conven- 1=IEC61850 tion tion used in IED 2=IEC60617 3=IEC-ANSI Default view 1=Measurements LHMI default view 1=Measurements 2=Main menu 3=SLD Backlight timeout...
  • Page 50: Non Group Settings

    Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description COT Length 1...2 Cause of transmission length IOA Length 1...3 Information Object Address length Link Address 1...2 Link Address Length Length ASDU Address 1...2 ASDU Address Length Length Single Char Resp 0=False 0=False Single character response enabled/ disa-...
  • Page 51 1MRS758755 C Basic functions 3.1.14 Non group settings Table 21: Non group settings Parameter Values (Range) Unit Step Default Description Unit mode 1=Primary 0=Nominal IEC 61850-8-1 unit mode 0=Nominal 2=Primary-Nominal MMS client expects primary values from event reporting and data attribute reads MMS client expects nominal values from event reporting and data attribute reads;...
  • Page 52: Modbus Settings

    Basic functions 1MRS758755 C 3.1.15 Modbus settings Table 22: Modbus settings Parameter Values (Range) Unit Step Default Description Operation 5=off Enable or disable 1=on this protocol in- 5=off stance Port 3=Ethernet - TCP 1 Port selection for 1=COM 1 this protocol in- 2=COM 2 stance.
  • Page 53 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description Event backoff 1...500 Defines how many events have to be read after event buffer overflow to allow new events to be buffered. Appli- cable in "Keep old- est" mode only. ControlStructPWd 1 **** Password for con-...
  • Page 54: Dnp3 Settings

    Basic functions 1MRS758755 C 3.1.16 DNP3 settings Table 23: DNP3 settings Parameter Values (Range) Unit Step Default Description Operation 1=on 5=off Operation Off / On 5=off Port 1=COM 1 3=Ethernet - TCP 1 Communication interface selection 2=COM 2 3=Ethernet - TCP 1 4=Ethernet TCP +UDP 1 Unit address 1...65519...
  • Page 55 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description App layer confirm 1=Disable 1=Disable Application layer confirm mode 2=Enable App confirm TO 100...65535 5000 Application layer confirm and UR timeout App layer fragment 50...2048 bytes 2048 Application layer frag- ment size UR mode 1=Disable...
  • Page 56: Com1/2 Serial Communication Settings

    Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Default Var Obj 21 1=1:32bit FrzCnt 6=6:16bit FrzCnt&time 1=32 bit frz counter; 2=16 bit frz counter; 5=32 bit 2=2:16bit FrzCnt frz counter with time; 6=16 bit frz counter with 5=5:32bit FrzCnt&time time;...
  • Page 57: Self-Supervision

    1MRS758755 C Basic functions Table 24: COM1/2 serial communication settings Parameter Values (Range) Unit Step Default Description Fiber mode 0=No fiber Fiber mode 0=No fiber 2=Fiber optic Serial mode 1=RS485 2Wire Serial mode 1=RS485 2Wire 2=RS485 4Wire 3=RS232 no hand- shake 4=RS232 with hand- shake...
  • Page 58 Figure 11: Output contact The internal fault code indicates the type of internal relay fault. When a fault appears, the code must be recorded so that it can be reported to ABB customer service. Table 25: Internal fault indications and codes...
  • Page 59 1MRS758755 C Basic functions Fault indication Fault code Additional information Internal Fault Faulty Signal Output relay(s) in card located in slot X120. SO-relay(s),X120 Internal Fault Faulty Signal Output relay(s) in card located in slot X130. SO-relay(s),X130 Internal Fault Faulty Power Output relay(s) in card located in slot X100.
  • Page 60: Warnings

    LHMI. The warning indication message can be manually cleared. If a warning appears, record the name and code so that it can be provided to ABB customer service. Table 26: Warning indications and codes Warning indication...
  • Page 61 1MRS758755 C Basic functions Warning indication Warning code Additional information Watchdog reset The auxiliary supply voltage has Warning dropped too low. Power down det. Error when building the IEC 61850 Warning data model. IEC61850 error Error in the Modbus communication. Warning Modbus error Error in the DNP3 communication.
  • Page 62: Led Indication Control

    Basic functions 1MRS758755 C Warning indication Warning code Additional information Unack card comp. Error in protection communication. Warning Protection comm. A continuous light has been detec- Warning ted on the ARC light input 1. ARC1 cont. light A continuous light has been detec- Warning ted on the ARC light input 2.
  • Page 63: Programmable Leds

    1MRS758755 C Basic functions LED indication control is preconfigured in a such way that all the protection function general start and operate signals are combined with this function (available as output signals OUT_START and OUT_OPERATE). These signals are always internally connected to Start and Trip LEDs. LEDPTRC collects and combines phase information from different protection functions (available as output signals OUT_ST_A /_B /_C and OUT_OPR_A /_B /_C).
  • Page 64 Basic functions 1MRS758755 C RE_615 START REA DY PIC K UP TRIP Overcur rent Di r. ea rth- f ault Combined P rot ect ion In sync f o close Frequen cy p rot ect ion B rea ker f ailu re Di s turb.
  • Page 65 1MRS758755 C Basic functions Figure 15 The menu structure for the programmable LEDs is presented in . The Alarm colour for all ALARM inputs is in the General common color selection setting menu, while the LED-specific settings are under the LED-specific menu nodes. Programmable LEDs General Alarm color...
  • Page 66: Signals

    Basic functions 1MRS758755 C Activating signal Acknow. Figure 18: Operating sequence "Latched-S" "LatchedAck-F-S": Latched, Flashing-ON This mode is a latched function. At the activation of the input signal, the alarm starts flashing. After acknowledgement, the alarm disappears if the signal is not present and gives a steady light if the signal is present.
  • Page 67: Settings

    1MRS758755 C Basic functions Name Type Default Description BOOLEAN 0=False Ok input for LED 4 ALARM BOOLEAN 0=False Alarm input for LED 4 RESET BOOLEAN 0=False Reset input for LED 4 BOOLEAN 0=False Ok input for LED 5 ALARM BOOLEAN 0=False Alarm input for LED 5 RESET...
  • Page 68 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Description Programmable Programmable LED LEDs LED 1 description Alarm mode 0=Follow-S Alarm mode for 0=Follow-S programmable LED 1=Follow-F 2=Latched-S 3=LatchedAck-F-S Description Programmable Programmable LED LEDs LED 2 description Alarm mode 0=Follow-S Alarm mode for 0=Follow-S...
  • Page 69: Monitored Data

    1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description Alarm mode 0=Follow-S Alarm mode for 0=Follow-S programmable LED 1=Follow-F 2=Latched-S 3=LatchedAck-F-S Description Programmable Programmable LED LEDs LED 10 description Alarm mode 0=Follow-S Alarm mode for 0=Follow-S programmable LED 1=Follow-F 2=Latched-S 3=LatchedAck-F-S...
  • Page 70: Time Synchronization

    Basic functions 1MRS758755 C Name Type Values (Range) Unit Description Programmable LED 9 Enum Status of programma- 0=None ble LED 9 1=Ok 3=Alarm Programmable LED 10 Enum Status of programma- 0=None ble LED 10 1=Ok 3=Alarm Programmable LED 11 Enum Status of programma- 0=None ble LED 11...
  • Page 71 1MRS758755 C Basic functions “Power Profile” mode, the TLVs required by the IEEE C37.238-2011 Power Profile are included in announce frames. IEEE 1588 v2 time synchronization requires a communication card with redundancy support (COM0031...COM0037). When Modbus TCP or DNP3 over TCP/IP is used, SNTP or IRIG-B time synchronization should be used for better synchronization accuracy.
  • Page 72 Basic functions 1MRS758755 C Table 31: Non group settings Parameter Values (Range) Unit Step Default Description Synch source 0=None 1=SNTP Time synchronization source 1=SNTP 2=Modbus 3=IEEE 1588 5=IRIG-B 9=DNP 17=IEC60870-5-10-3 PTP domain ID 0...255 The domain is identi- fied by an integer, the domainNumber, in the range of 0 to 255.
  • Page 73: Parameter Setting Groups

    1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 4=April 5=May 6=June 7=July 8=August 9=September 10=October 11=November 12=December DST on day (week- 0=reserved 0=reserved Daylight saving time on, day of day) week 1=Monday 2=Tuesday 3=Wednesday 4=Thursday 5=Friday 6=Saturday 7=Sunday DST off time 0...23...
  • Page 74: Function Block

    Basic functions 1MRS758755 C Parameter setting groups 3.6.1 Function block Figure 21: Function block 3.6.2 Functionality The protection relay supports six setting groups. Each setting group contains parameters categorized as group settings inside application functions. The customer can change the active setting group at run time. The active setting group can be changed by a parameter or via binary inputs depending on the mode selected with the Configuration >...
  • Page 75: Test Mode

    1MRS758755 C Basic functions time of installation and commissioning and not change it throughout the SG operation mode setting from protection relay's service. Changing the "Logic mode 1" to "Logic mode 2" or from "Logic mode 2" to "Logic mode 1"...
  • Page 76: Functionality

    Basic functions 1MRS758755 C Figure 22: Function blocks 3.7.2 Functionality The mode of all the logical nodes in the relay's IEC 61850 data model can be set with Test mode . Test mode is selected through one common parameter via the WHMI path Tests >...
  • Page 77: Application Configuration And Control Mode

    1MRS758755 C Basic functions 3.7.4 Control mode The mode of all logical nodes located under CTRL logical device can be set with Control mode . The Control mode parameter is available via the HMI or PCM600 Control mode can only be set path Configuration >...
  • Page 78: Signals

    Basic functions 1MRS758755 C 3.7.7 LHMI indications The yellow Start LED flashes when the relay is in “IED blocked” or “IED test and blocked” mode. The green Ready LED flashes to indicate that the “IED test and blocked” mode or "IED test" mode is activated. 3.7.8 Signals 3.7.8.1...
  • Page 79: Fault Recorder Fltrfrc

    1MRS758755 C Basic functions Name Type Description SG_4_ACT BOOLEAN Setting group 4 is active SG_5_ACT BOOLEAN Setting group 5 is active SG_6_ACT BOOLEAN Setting group 6 is active BEH_BLK BOOLEAN Logical device LD0 block sta- BEH_TST BOOLEAN Logical device LD0 test sta- FRQ_ADP_FAIL BOOLEAN Frequency adaptivity status...
  • Page 80: Settings

    Basic functions 1MRS758755 C The fault recording period begins from the start event of any protection function and ends if any protection function trips or the start is restored before the operate event. If a start is restored without an operate event, the start duration shows the protection function that has started first.
  • Page 81: Monitored Data

    1MRS758755 C Basic functions 3.8.4 Monitored data 3.8.4.1 FLTRFRC Monitored data Table 47: FLTRFRC Monitored data Name Type Values (Range) Unit Description Fault number INT32 0...999999 Fault record number Time and date Timestamp Fault record time stamp Protection Enum 0=Unknown Protection function 1=PHLPTOC1 2=PHLPTOC2...
  • Page 82 Basic functions 1MRS758755 C Name Type Values (Range) Unit Description 60=FRPFRQ2 61=FRPFRQ3 62=FRPFRQ4 63=FRPFRQ5 64=FRPFRQ6 65=LSHDPFRQ1 66=LSHDPFRQ2 67=LSHDPFRQ3 68=LSHDPFRQ4 69=LSHDPFRQ5 71=DPHLPDOC1 72=DPHLPDOC2 74=DPHHPDOC1 77=MAPGAPC1 78=MAPGAPC2 79=MAPGAPC3 85=MNSPTOC1 86=MNSPTOC2 88=LOFLPTUC1 90=TR2PTDF1 91=LNPLDF1 92=LREFPNDF1 94=MPDIF1 96=HREFPDIF1 100=ROVPTOV1 101=ROVPTOV2 102=ROVPTOV3 104=PHPTOV1 105=PHPTOV2 106=PHPTOV3 108=PHPTUV1 109=PHPTUV2 110=PHPTUV3...
  • Page 83 1MRS758755 C Basic functions Name Type Values (Range) Unit Description -81=SPHPTOV2 -80=SPHPTOV1 -25=OEPVPH4 -24=OEPVPH3 -23=OEPVPH2 -22=OEPVPH1 -19=PSPTOV2 -18=PSPTOV1 -15=PREVPTOC1 -12=PHPTUC2 -11=PHPTUC1 -9=PHIZ1 5=PHLTPTOC1 20=EFLPTOC4 26=EFHPTOC5 27=EFHPTOC6 37=NSPTOC3 38=NSPTOC4 45=T1PTTR2 54=DEFHPDEF2 75=DPHHPDOC2 89=LOFLPTUC2 103=ROVPTOV4 117=PSPTUV2 -13=PHPTUC3 3=PHLPTOC3 10=PHHPTOC5 11=PHHPTOC6 28=EFHPTOC7 29=EFHPTOC8 107=PHPTOV4 111=PHPTUV4 114=NSPTOV3...
  • Page 84 Basic functions 1MRS758755 C Name Type Values (Range) Unit Description -98=RESCPSCH1 -57=FDEFLPDEF2 -56=FDEFLPDEF1 -54=FEFLPTOC1 -53=FDPHLPDOC2 -52=FDPHLPDOC1 -50=FPHLPTOC1 -47=MAP12GAPC8 -46=MAP12GAPC7 -45=MAP12GAPC6 -44=MAP12GAPC5 -43=MAP12GAPC4 -42=MAP12GAPC3 -41=MAP12GAPC2 -40=MAP12GAPC1 -37=HAEFPTOC1 -35=WPWDE3 -34=WPWDE2 -33=WPWDE1 52=DEFLPDEF3 84=MAPGAPC8 93=LREFPNDF2 97=HREFPDIF2 -117=XDEFLPDEF2 -116=XDEFLPDEF1 -115=SDPHLPDOC2 -114=SDPHLPDOC1 -113=XNSPTOC 2 -112=XNSPTOC1 -111=XEFIPTOC2 -110=XEFHPTOC4 -109=XEFHPTOC3...
  • Page 85 1MRS758755 C Basic functions Name Type Values (Range) Unit Description -74=DOPPDPR3 -73=DOPPDPR2 -70=DUPPDPR2 -58=UZPDIS1 -36=UEXPDIS1 14=MFADPSDE 1 -10=LVRTPTUV 1 -8=LVRTPTUV2 -6=LVRTPTUV3 -122=DPH3LPDOC1 -121=DPH3HPDOC2 -120=DPH3HPDOC1 -119=PH3LPTOC2 -118=PH3LPTOC1 -79=PH3HPTOC2 -78=PH3HPTOC1 -77=PH3IPTOC1 -127=PHAPTUV1 -124=PHAPTOV 1 -123=DPH3LPD OC2 -68=PHPVOC2 -67=DQPTUV2 -39=UEXPDIS2 98=MHZPDIF1 -4=MREFPTOC1 15=MFADPSDE2 55=DEFHPDEF3 73=DPHLPDOC3 76=DPHHPDOC3...
  • Page 86 Basic functions 1MRS758755 C Name Type Values (Range) Unit Description Fault loop React FLOAT32 -1000.00...1000. 00 Reactance of fault loop, PHDSTPDIS1 Active group INT32 1...6 Active setting group Shot pointer INT32 1...7 Autoreclosing shot pointer value Max diff current IL1 FLOAT32 0.000...80.000 Maximum phase A dif-...
  • Page 87 1MRS758755 C Basic functions Name Type Values (Range) Unit Description Current Ng-Seq FLOAT32 0.000...50.000 Negative sequence cur- rent Max current IL1B FLOAT32 0.000...50.000 Maximum phase A cur- rent (b) Max current IL2B FLOAT32 0.000...50.000 Maximum phase B cur- rent (b) Max current IL3B FLOAT32 0.000...50.000...
  • Page 88 Basic functions 1MRS758755 C Name Type Values (Range) Unit Description Voltage U31 FLOAT32 0.000...4.000 Phase C to phase A volt- Voltage Uo FLOAT32 0.000...4.000 Residual voltage Voltage Zro-Seq FLOAT32 0.000...4.000 Zero sequence voltage Voltage Ps-Seq FLOAT32 0.000...4.000 Positive sequence volt- Voltage Ng-Seq FLOAT32 0.000...4.000...
  • Page 89: Nonvolatile Memory

    1MRS758755 C Basic functions Name Type Values (Range) Unit Description Angle U23B - IL1B FLOAT32 -180.00...180.00 Angle phase B to phase C voltage - phase A cur- rent (b) Angle U31B - IL2B FLOAT32 -180.00...180.00 Angle phase C to phase A voltage - phase B cur- rent (b) Angle U12B - IL3B...
  • Page 90 Basic functions 1MRS758755 C Secondary Value ) is not in V but in mV/Hz, which makes the same setting value valid for both 50 and 60 Hz nominal frequency. × (Equation 1) Rated Secondary Value in mV/Hz Application nominal current Sensor-rated primary current Network nominal frequency Sensor-rated voltage at the rated current in mV...
  • Page 91: Binary Input

    VT connection sensor” and it cannot be changed. The same applies for the parameter which is always set to “WYE” type. The division ratio for ABB Division ratio parameter is voltage sensors is most often 10000:1. Thus, the usually set to “10000”.
  • Page 92: Binary Input Inversion

    Basic functions 1MRS758755 C Filtered input signal Filter time Input signal Figure 24: Binary input filtering At the beginning, the input signal is at the high state, the short low state is filtered and no input state change is detected. The low state starting from the time t exceeds the filter time, which means that the change in the input state is detected and the time tag attached to the input change is t .
  • Page 93: Binary Outputs

    1MRS758755 C Basic functions 3.11.3 Oscillation suppression Oscillation suppression is used to reduce the load from the system when a binary input starts oscillating. A binary input is regarded as oscillating if the number of valid state changes (= number of events after filtering) during one second is equal to or greater than the set oscillation level value.
  • Page 94 Basic functions 1MRS758755 C 3.12.1 Power output contacts Power output contacts are normally used for energizing the breaker closing coil and trip coil, external high burden lockout or trip relays. 3.12.1.1 Dual single-pole power outputs PO1 and PO2 Dual (series-connected) single-pole (normally open/form A) power output contacts PO1 and PO2 are rated for continuous current of 8 A.
  • Page 95 1MRS758755 C Basic functions X100 TCS1 TCS2 Figure 26: Double-pole power outputs PO3 and PO4 with trip circuit supervision Power outputs PO3 and PO4 are included in the power supply module located in slot X100 of the protection relay. 3.12.1.3 Dual single-pole high-speed power outputs HSO1, HSO2 and HSO3 HSO1, HSO2 and HSO3 are dual parallel connected, single-pole, normally open/form A high-speed power outputs.
  • Page 96: Signal Output Contacts

    Basic functions 1MRS758755 C X110 HSO1 HSO2 HSO3 Figure 27: High-speed power outputs HSO1, HSO2 and HSO3 The reset time of the high-speed output contacts is longer than that of the conventional output contacts. High-speed power contacts are part of the card BIO0007 with eight binary inputs and three HSOs.
  • Page 97 1MRS758755 C Basic functions X100 Figure 28: Internal fault signal output IRF 3.12.2.2 Signal outputs SO1 and SO2 in power supply module Signal outputs (normally open/form A or change-over/form C) SO1 (dual parallel form C) and SO2 (single contact/form A) are part of the power supply module of the protection relay.
  • Page 98 Basic functions 1MRS758755 C X110 X110 Figure 30: Signal output in BIO0005 3.12.2.4 Signal outputs SO1, SO2 and SO3 in BIO0006 The optional card BIO0006 provides the signal outputs SO1, SO2 and SO3. Signal outputs SO1 and SO2 are dual, parallel form C contacts; SO3 is a single form C contact.
  • Page 99: Rtd/Ma Inputs

    1MRS758755 C Basic functions X130 Figure 31: Signal output in BIO0006 3.13 RTD/mA inputs 3.13.1 Functionality The RTD and mA analog input module is used for monitoring and metering current (mA), temperature (°C) and resistance (Ω). Each input can be linearly scaled for various applications, for example, transformer’s tap changer position indication.
  • Page 100 Basic functions 1MRS758755 C Table 54: Limits for the RTD/mA inputs Input mode Description Not in use Default selection. Used when the corresponding input is not used. 0...20 mA Selection for analog DC milliampere current inputs in the input range of 0...20 mA.
  • Page 101 1MRS758755 C Basic functions Value unit = "Ohm" when The input scaling can be bypassed by selecting Input mode = "Resistance" is used and by selecting Value unit = "Ampere" Input mode = "0...20 mA" is used. when Example for linear scaling Milliampere input is used as tap changer position information.
  • Page 102 Basic functions 1MRS758755 C 3.13.2.6 Calibration RTD and mA inputs are calibrated at the factory. The calibration circuitry monitors the RTD channels continuously and reports a circuitry break of any channel. 3.13.2.7 Limit value supervision The limit value supervision function indicates whether the measured value of AI_INST# exceeds or falls below the set limits.
  • Page 103 1MRS758755 C Basic functions Function Settings for limit value supervision Low limit Val low limit Low-low limit Val low low limit Out of range Value minimum Value maximum setting or the Value When the measured value exceeds either the minimum setting, the corresponding quality is set to out of range and a maximum or minimum value is shown when the measured value exceeds the added hysteresis, respectively.
  • Page 104 Basic functions 1MRS758755 C If AI_VAL# changes to 90, the reporting delay is: 7500 ° − ° ⋅ 100000 t s ( ) ≈ ° − ° (Equation 4) Table 57: Settings for X130 (RTD) analog input deadband supervision Function Setting Maximum/minimum (=range)
  • Page 105 1MRS758755 C Basic functions Platinum TCR 0.00385 Nickel TCR 0.00618 Copper Temp °C 0.00427 Pt 100 Pt 250 Ni 100 Ni 120 Ni 250 Cu 10 198.6 238.32 496.5 161.04 402.6 206.6 247.92 516.5 15.217 168.46 421.15 223.2 267.84 175.84 439.6 240.7 288.84...
  • Page 106 Basic functions 1MRS758755 C Figure 36: Three RTD/resistance sensors connected according to the 2-wire connection X130 Sensor Shunt Transducer (44 Ω) Figure 37: mA wiring connection 3.13.2.11 RTD/mA card variants The available variants of RTD cards are 6RTD/2mA and 2RTD/1mA. The features are similar in both cards.
  • Page 107 1MRS758755 C Basic functions 6RTD/2mA card This card accepts two milliampere inputs and six inputs from the RTD sensors. The inputs 1 and 2 are used for current measurement, whereas inputs from 3 to 8 are used for resistance type of measurements. RTD/mA input connection Resistance and temperature sensors can be connected to the 6RTD/2mA board with 3-wire and 2-wire connections.
  • Page 108 Basic functions 1MRS758755 C X110 Resistor sensor RTD1 RTD2 RTD3 Figure 39: Three RTD sensors and two resistance sensors connected according to the 2-wire connection for 6RTD/2mA card X110 Sensor Shunt Transducer (44 Ω) Figure 40: mA wiring connection for 6RTD/2mA card 2RTD/1mA card This type of card accepts one milliampere input, two inputs from RTD sensors and five inputs from VTs.
  • Page 109 1MRS758755 C Basic functions RTD/mA input connections The examples of 3-wire and 2-wire connections of resistance and temperature sensors to the 2RTD/1mA board are as shown: X130 Resistor sensor RTD1 RTD2 Figure 41: Two RTD and resistance sensors connected according to the 3-wire connection for RTD/mA card X130 Resistor sensor...
  • Page 110: Signals

    Basic functions 1MRS758755 C X130 Sensor Shunt Transducer (44 Ω) Figure 43: mA wiring connection for RTD/mA card 3.13.3 Signals Table 59: Output signals Name Type Description ALARM BOOLEAN General alarm WARNING BOOLEAN General warning AI_VAL1 FLOAT32 mA input, Connectors 1-2, instantaneous val- AI_VAL2 FLOAT32 mA input, Connectors 3-4, instantaneous val-...
  • Page 111 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 20=Ni100 21=Ni120 22=Ni250 30=Cu10 Input maximum 0...2000 Ω 2000 Maximum analogue input value for mA or resistance scaling Input minimum 0...2000 Ω Minimum analogue input value for mA or resistance scaling Value unit 1=Dimension- Selected unit for output value for-...
  • Page 112: Monitored Data

    Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Val high high limit -10000.0...10000.0 10000 Output value high alarm limit for su- pervision Value high limit -10000.0...10000.0 10000 Output value high warning limit for supervision Value low limit -10000.0...10000.0 -10000 Output value low...
  • Page 113: Smv Function Blocks

    1MRS758755 C Basic functions Name Type Values (Range) Unit Description AI_DB5 FLOAT32 -10000.0...10000 .0 RTD input, Connectors 9-10-11c, reported value AI_RANGE5 Enum RTD input, Connectors 9-10-11c, range 0=normal 1=high 2=low 3=high-high 4=low-low AI_DB6 FLOAT32 -10000.0...10000 .0 RTD input, Connectors 13-14-12c, repor- ted value AI_RANGE6 Enum...
  • Page 114 Basic functions 1MRS758755 C 3.14.1.2 Settings Table 63: SMVSENDER Settings Parameter Values (Range) Unit Step Default Description Operation 1=on Operation 1=on 5=off REC615 & RER615 Technical Manual...
  • Page 115: Iec 61850-9-2 Le Sampled Values Receiving Smvrcv

    1MRS758755 C Basic functions 3.14.2 IEC 61850-9-2 LE sampled values receiving SMVRCV 3.14.2.1 Function block Figure 44: Function block 3.14.2.2 Functionality The SMVRCV function block is used for activating the SMV receiving functionality. 3.14.2.3 Signals Table 64: SMVRCV Output signals Name Type Description...
  • Page 116 Basic functions 1MRS758755 C The typical additional operate time increase is +2 ms for all the receiver application functions (using either local or remote samples) when SMV is used. 3.14.3.3 Operation principle The ALARM in the receiver is activated if the synchronization accuracy of the sender or the receiver is either unknown or worse than 100 ms.
  • Page 117: Restvtr Function Block

    1MRS758755 C Basic functions Table 66: ULTVTR Output signals Name Type Description ALARM BOOLEAN Alarm WARNING BOOLEAN Warning 3.14.3.5 Settings Table 67: ULTVTR Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Primary voltage 0.100...440.000 0.001 20.000 Primary rated voltage Secondary voltage 60...210 Secondary rated voltage...
  • Page 118 Basic functions 1MRS758755 C 3.14.4.1 Function block Figure 46: Function block 3.14.4.2 Functionality The RESTVTR function is used in the receiver application to perform the supervision for the sampled values of analog residual voltage and to connect the received analog residual voltage input to the application. Synchronization accuracy, sampled value frame transfer delays and missing frames are being supervised.
  • Page 119: Goose Function Blocks

    1MRS758755 C Basic functions Table 69: RESTVTR Output signals Name Type Description ALARM BOOLEAN Alarm WARNING BOOLEAN Warning 3.14.4.5 Settings Table 70: RESTVTR Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Primary voltage 0.100...440.000 0.001 11.547 Primary voltage Secondary voltage 60...210 Secondary voltage...
  • Page 120: Goosercv_Dp Function Block

    Basic functions 1MRS758755 C 3.15.1.1 Function block Figure 47: Function block 3.15.1.2 Functionality The GOOSERCV_BIN function is used to connect the GOOSE binary inputs to the application. 3.15.1.3 Signals Table 71: GOOSERCV_BIN Output signals Name Type Description BOOLEAN Output signal VALID BOOLEAN Output signal...
  • Page 121 1MRS758755 C Basic functions 3.15.3 GOOSERCV_MV function block 3.15.3.1 Function block Figure 49: Function block 3.15.3.2 Functionality The GOOSERCV_MV function is used to connect the GOOSE measured value inputs to the application. 3.15.3.3 Signals Table 73: GOOSERCV_MV Output signals Name Type Description FLOAT32...
  • Page 122: Goosercv_Int8 Function Block

    Basic functions 1MRS758755 C 3.15.4 GOOSERCV_INT8 function block 3.15.4.1 Function block Figure 50: Function block 3.15.4.2 Functionality The GOOSERCV_INT8 function is used to connect the GOOSE 8 bit integer inputs to the application. 3.15.4.3 Signals Table 74: GOOSERCV_INT8 Output signals Name Type Description...
  • Page 123: Goosercv_Cmv Function Block

    1MRS758755 C Basic functions The CL output signal indicates that the position is closed. Default value (0) is used if VALID output indicates invalid status. The OK output signal indicates that the position is neither in faulty or intermediate state. The default value (0) is used if VALID output indicates invalid status. 3.15.5.3 Signals Table 75: GOOSERCV_INTL Output signals...
  • Page 124: Goosercv_Enum Function Block

    Basic functions 1MRS758755 C 3.15.7 GOOSERCV_ENUM function block 3.15.7.1 Function block Figure 53: Function block 3.15.7.2 Functionality The GOOSERCV_ENUM function block is used to connect GOOSE enumerator inputs to the application. 3.15.7.3 Signals Table 77: GOOSERCV_ENUM Output signals Name Type Description Enum Output signal...
  • Page 125: Type Conversion Function Blocks

    1MRS758755 C Basic functions 3.15.8.3 Signals Table 78: GOOSERCV_INT32 Output signals Name Type Description INT32 Output signal VALID BOOLEAN Output signal 3.16 Type conversion function blocks 3.16.1 QTY_GOOD function block 3.16.1.1 Function block Figure 55: Function block 3.16.1.2 Functionality The QTY_GOOD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application.
  • Page 126: Qty_Goose_Comm Function Block

    Basic functions 1MRS758755 C 3.16.2 QTY_BAD function block 3.16.2.1 Function block Figure 56: Function block 3.16.2.2 Functionality The QTY_BAD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application. The IN input can be connected to any logic application signal (logic function output, binary input, application function output or received GOOSE signal).
  • Page 127: T_Health Function Block

    1MRS758755 C Basic functions 3.16.3.2 Functionality The QTY_GOOSE_COMM function block evaluates the peer device communication status from the quality bits of the input signal and passes it as a Boolean signal to the application. The IN input can be connected to any GOOSE application logic output signal, for example, GOOSERCV_BIN.
  • Page 128: T_F32_Int8 Function Block

    Basic functions 1MRS758755 C 3.16.4.3 Signals Table 85: T_HEALTH Input signals Name Type Default Description Input signal Table 86: T_HEALTH Output signals Name Type Description BOOLEAN Output signal WARNING BOOLEAN Output signal ALARM BOOLEAN Output signal 3.16.5 T_F32_INT8 function block 3.16.5.1 Function block Figure 59: Function block...
  • Page 129: T_Tcmd Function Block

    1MRS758755 C Basic functions 3.16.6.1 Function block Figure 60: Function block 3.16.6.2 Functionality The T_DIR function evaluates enumerated data of the FAULT_DIR data attribute of the directional functions. T_DIR can only be used with GOOSE. The DIR input can be connected to the GOOSERCV_ENUM function block, which is receiving the LD0.<function>.Str.dirGeneral or LD0.<function>.Dir.dirGeneral data attribute sent by another device.
  • Page 130: T_Tcmd_Bin Function Block

    Basic functions 1MRS758755 C Table 91: Conversion from enumerated to Boolean RAISE LOWER FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE 3.16.7.3 Signals Table 92: T_TCMD input signals Name Type Default Description Enum Input signal Table 93: T_TCMD output signals Name Type Description...
  • Page 131: T_Bin_Tcmd Function Block

    1MRS758755 C Basic functions 3.16.8.3 Signals Table 95: T_TCMD_BIN input signals Name Type Default Description INT32 Input signal Table 96: T_TCMD_BIN output signals Name Type Description RAISE BOOLEAN Raise command LOWER BOOLEAN Lower command 3.16.9 T_BIN_TCMD function block 3.16.9.1 Function block Figure 63: Function block 3.16.9.2 Functionality...
  • Page 132: Configurable Logic Blocks

    Basic functions 1MRS758755 C Table 99: T_BIN_TCMD output signals Name Type Description INT32 Output signal 3.17 Configurable logic blocks 3.17.1 Standard configurable logic blocks 3.17.1.1 OR function block Function block Figure 64: Function blocks Functionality OR, OR6 and OR20 are used to form general combinatory expressions with Boolean variables The O output is activated when at least one input has the value TRUE.
  • Page 133 1MRS758755 C Basic functions Signals Table 100: OR Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 Table 101: OR6 Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 BOOLEAN Input signal 3 BOOLEAN Input signal 4...
  • Page 134 Basic functions 1MRS758755 C Table 104: OR6 Output signal Name Type Description BOOLEAN Output signal Table 105: OR20 Output signal Name Type Description BOOLEAN Output signal Settings The function does not have any parameters available in LHMI or PCM600. 3.17.1.2 AND Function block AND Function block Figure 65: Function blocks...
  • Page 135 1MRS758755 C Basic functions Signals Table 106: AND Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 Table 107: AND6 Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 BOOLEAN Input signal 3 BOOLEAN Input signal 4...
  • Page 136 Basic functions 1MRS758755 C Table 110: AND6 Output signal Name Type Description BOOLEAN Output signal Table 111: AND20 Output signal Name Type Description BOOLEAN Output signal Settings The function does not have any parameters available in LHMI or PCM600. 3.17.1.3 XOR function block Function block Figure 66: Function block...
  • Page 137 1MRS758755 C Basic functions 3.17.1.4 NOT function block Function block Figure 67: Function block Functionality NOT is used to generate combinatory expressions with Boolean variables. NOT inverts the input signal. Signal Table 114: NOT Input signal Name Type Default Description BOOLEAN Input signal Table 115: NOT Output signal...
  • Page 138 Basic functions 1MRS758755 C Signals Table 116: MAX3 Input signals Name Type Default Description FLOAT32 Input signal 1 FLOAT32 Input signal 2 FLOAT32 Input signal 3 Table 117: MAX3 Output signal Name Type Description FLOAT32 Output signal Settings The function does not have any parameters available in LHMI or PCM600. 3.17.1.6 MIN3 function block Function block...
  • Page 139 1MRS758755 C Basic functions Settings The function does not have any parameters available in LHMI or PCM600. 3.17.1.7 R_TRIG function block Function block Figure 70: Function block Functionality R_TRIG is used as a rising edge detector. R_TRIG detects the transition from FALSE to TRUE at the CLK input. When the rising edge is detected, the element assigns the output to TRUE.
  • Page 140 Basic functions 1MRS758755 C The function detects the transition from TRUE to FALSE at the CLK input. When the falling edge is detected, the element assigns the Q output to TRUE. At the next execution round, the output is returned to FALSE despite the state of the input. Signals Table 122: F_TRIG Input signals Name...
  • Page 141 1MRS758755 C Basic functions Signals Table 125: T_POS_CL Input signals Name Type Default Description Double binary Input signal Table 126: T_POS_OP Input signals Name Type Default Description Double binary Input signal Table 127: T_POS_OK Input signals Name Type Default Description Double binary Input signal Table 128: T_POS_CL Output signal...
  • Page 142 Basic functions 1MRS758755 C CTL_SW FALSE TRUE Signals Table 131: SWITCHR Input signals Name Type Default Description CTL_SW BOOLEAN Control Switch REAL Real input 1 REAL Real input 2 Table 132: SWITCHR Output signals Name Type Description REAL Real switch output 3.17.1.11 SWITCHI32 function block Function block...
  • Page 143 1MRS758755 C Basic functions Table 135: SWITCHI32 output signals Name Type Description INT32 Output signal 3.17.1.12 SR function block Function block Figure 75: Function block Functionality The SR flip-flop output Q can be set or reset from the S or R inputs. S input has a higher priority over the R input.
  • Page 144 Basic functions 1MRS758755 C 3.17.1.13 RS function block Function block Figure 76: Function block Functionality The RS flip-flop output Q can be set or reset from the S or R inputs. R input has a higher priority over the S input. Output NOTQ is the negation of output Q. The statuses of outputs Q and NOTQ are not retained in the nonvolatile memory.
  • Page 145: Minimum Pulse Timer

    1MRS758755 C Basic functions Technical revision history Table 142: RS Technical revision history Technical revision Change The name of the function has been changed from SR to RS. 3.17.2 Minimum pulse timer 3.17.2.1 Minimum pulse timer TPGAPC Function block Figure 77: Function block Functionality The Minimum pulse timer function TPGAPC contains two independent timers.
  • Page 146 Basic functions 1MRS758755 C Table 144: TPGAPC Output signals Name Type Description OUT1 BOOLEAN Output 1 status OUT2 BOOLEAN Output 2 status Settings TPGAPC Non group settings (Basic) Table 145: TPGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Pulse time...
  • Page 147 1MRS758755 C Basic functions Signals Table 147: TPSGAPC Input signals Name Type Default Description BOOLEAN 0=False Input 1 BOOLEAN 0=False Input 2 Table 148: TPSGAPC Output signals Name Type Description OUT1 BOOLEAN Output 1 status OUT2 BOOLEAN Output 2 status Settings TPSGAPC Non group settings (Basic) Table 149: TPSGAPC Non group settings (Basic)
  • Page 148: Pulse Timer Ptgapc

    Basic functions 1MRS758755 C Figure 82: A = Trip pulse is shorter than Pulse time setting, B = Trip pulse is longer than Pulse time setting Signals Table 151: TPMGAPC Input signals Name Type Default Description BOOLEAN 0=False Input 1 BOOLEAN 0=False Input 2...
  • Page 149 1MRS758755 C Basic functions 3.17.3.2 Functionality The pulse timer function PTGAPC contains eight independent timers. The function has a settable pulse length. Once the input is activated, the output is set for a Pulse delay time setting. specific duration using the dt = Pulse delay time Figure 84: Timer operation 3.17.3.3...
  • Page 150: Daily Timer Function Dtmgapc

    Basic functions 1MRS758755 C 3.17.3.4 Settings PTGAPC Non group settings (Basic) Table 156: PTGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Pulse time 1 0...3600000 Pulse time Pulse time 2 0...3600000 Pulse time Pulse time 3 0...3600000 Pulse time Pulse time 4...
  • Page 151 1MRS758755 C Basic functions 3.17.4.4 Operation principle Operation setting. The The function can be enabled and disabled with the corresponding parameter values are "On" and "Off". The operation of DTMGAPC can be described with a module diagram. All the modules in the diagram are explained in the next sections. BLOCK Time comparator...
  • Page 152 Basic functions 1MRS758755 C 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 Monday Set Mon Act hour = 07 hrs Set Mon Act Min = 15 min Set Mon Act Dur = 525 min Figure 87: Example setting values for Output Q activation 3.17.4.6 Signals Table 158: DTMGAPC Input signals...
  • Page 153 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description Tuesday Act Mn 0...59 Activation minute time for Tuesday Tuesday off delay 1...1440 Activation duration for Tuesday Wednesday Act enable 0=False false Activation / deactivation need on Wednesday 1=True Wednesday Act hour 0...23 Activation hour time for Wed-...
  • Page 154: Time Delay Off (8 Pcs) Tofgapc

    Basic functions 1MRS758755 C 3.17.4.8 Monitored data Table 161: DTMGAPC Monitored data Name Type Values (Range) Unit Description DTMGAPC Enum 1=on Status 2=blocked 3=test 4=test/blocked 5=off 3.17.5 Time delay off (8 pcs) TOFGAPC 3.17.5.1 Function block Figure 88: Function block 3.17.5.2 Functionality The time delay off (8 pcs) function TOFGAPC can be used, for example, for a...
  • Page 155 1MRS758755 C Basic functions 3.17.5.3 Signals Table 162: TOFGAPC Input signals Name Type Default Description BOOLEAN 0=False Input 1 status BOOLEAN 0=False Input 2 status BOOLEAN 0=False Input 3 status BOOLEAN 0=False Input 4 status BOOLEAN 0=False Input 5 status BOOLEAN 0=False Input 6 status...
  • Page 156: Time Delay On (8 Pcs) Tongapc

    Basic functions 1MRS758755 C 3.17.6 Time delay on (8 pcs) TONGAPC 3.17.6.1 Function block Figure 90: Function block 3.17.6.2 Functionality The time delay on (8 pcs) function TONGAPC can be used, for example, for time-delaying the output related to the input signal. TONGAPC contains eight independent timers.
  • Page 157: Set-Reset (8 Pcs) Srgapc

    1MRS758755 C Basic functions Table 167: TONGAPC Output signals Name Type Description BOOLEAN Output 1 BOOLEAN Output 2 BOOLEAN Output 3 BOOLEAN Output 4 BOOLEAN Output 5 BOOLEAN Output 6 BOOLEAN Output 7 BOOLEAN Output 8 3.17.6.4 Settings Table 168: TONGAPC Non group settings (Basic) Parameter Values (Range) Unit...
  • Page 158 Basic functions 1MRS758755 C 3.17.7.1 Function block Figure 92: Function block 3.17.7.2 Functionality The set-reset (8 pcs) function SRGAPC is a simple SR flip-flop with a memory that can be set or that can reset an output from the S# or R# inputs, respectively. The function contains eight independent set-reset flip-flop latches where the SET input has the higher priority over the RESET input.
  • Page 159 1MRS758755 C Basic functions Name Type Default Description BOOLEAN 0=False Set Q2 output when BOOLEAN 0=False Resets Q2 output when set BOOLEAN 0=False Set Q3 output when BOOLEAN 0=False Resets Q3 output when set BOOLEAN 0=False Set Q4 output when BOOLEAN 0=False Resets Q4 output...
  • Page 160: Move (8 Pcs) Mvgapc

    Basic functions 1MRS758755 C Table 173: SRGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Reset Q1 0=Cancel Resets Q1 output 0=Cancel when set 1=Reset Reset Q2 0=Cancel Resets Q2 output 0=Cancel when set 1=Reset Reset Q3 0=Cancel Resets Q3 output 0=Cancel...
  • Page 161: Integer Value Move Mvi4Gapc

    1MRS758755 C Basic functions 3.17.8.3 Signals Table 174: MVGAPC Input signals Name Type Default Description BOOLEAN 0=False IN1 status BOOLEAN 0=False IN2 status BOOLEAN 0=False IN3 status BOOLEAN 0=False IN4 status BOOLEAN 0=False IN5 status BOOLEAN 0=False IN6 status BOOLEAN 0=False IN7 status BOOLEAN...
  • Page 162: Analog Value Scaling Sca4Gapc

    Basic functions 1MRS758755 C 3.17.9.1 Function block MVI4GAPC OUT1 OUT2 OUT3 OUT4 Figure 94: Function block 3.17.9.2 Functionality The integer value move function MVI4GAPC is used for creation of the events from the integer values. The integer input value is received via IN1...4 input. The integer output value is available on OUT1...4 output.
  • Page 163 1MRS758755 C Basic functions 3.17.10.1 Function block SCA4GAPC AI1_VALUE AO1_VALUE AI2_VALUE AO2_VALUE AI3_VALUE AO3_VALUE AI4_VALUE AO4_VALUE Figure 95: Function block 3.17.10.2 Functionality The analog value scaling function SCA4GAPC is used for scaling the analog value. It allows creating events from analog values. Scale ratio n The analog value received via the AIn_VALUE input is scaled with the setting.
  • Page 164 Basic functions 1MRS758755 C Table 180: SCA4GAPC Output signals Name Type Description AO1_VALUE FLOAT32 Analog value 1 after scaling AO2_VALUE FLOAT32 Analog value 2 after scaling AO3_VALUE FLOAT32 Analog value 3 after scaling AO4_VALUE FLOAT32 Analog value 4 after scaling 3.17.10.4 Settings Table 181: SCA4GAPC settings...
  • Page 165: Local/Remote Control Function Block Control

    1MRS758755 C Basic functions 3.17.11 Local/remote control function block CONTROL 3.17.11.1 Function block Figure 96: Function block 3.17.11.2 Functionality Local/Remote control is by default realized through the R/L button on the front panel. The control via binary input can be enabled by setting the value of the LR control setting to "Binary input".
  • Page 166 Basic functions 1MRS758755 C 3.17.11.3 L/R control access Four different Local/Remote control access scenarios are possible depending on the selected station authority level: “L,R”, “L,R,L+R”, “L,S,R” and “L, S, S+R, L+S, L+S+R”. If control commands need to be allowed from multiple levels, multilevel access can be used.
  • Page 167 1MRS758755 C Basic functions Table 184: Station authority “L,R” using CONTROL function block L/R control L/R control status Control access Control FB input CTRL.LLN0.LocSta CTRL.LLN0.MltLev L/R state Local user IEC 61850 client CTRL.LLN0.LocKey CTRL_OFF FALSE CTRL_LOC FALSE CTRL_STA FALSE CTRL_REM FALSE CTRL_ALL FALSE...
  • Page 168 Basic functions 1MRS758755 C Table 186: Station authority “L,R,L+R” using CONTROL function block L/R Control L/R Control status Control access Control FB input CTRL.LLN0.LocSta CTRL.LLN0.MltLev L/R state Local user IEC 61850 client CTRL.LLN0.LocKey CTRL_OFF FALSE CTRL_LOC FALSE CTRL_STA FALSE CTRL_REM FALSE CTRL_ALL TRUE...
  • Page 169 1MRS758755 C Basic functions Table 187: Station authority level “L,S,R” using R/L button L/R Control L/R Control status Control access R/L button CTRL.LLN0.LocS CTRL.LLN0.MltL L/R state Local user IEC 61850 client IEC 61850 CTRL.LLN0.Loc client KeyHMI Local FALSE FALSE Remote FALSE FALSE Remote...
  • Page 170 Basic functions 1MRS758755 C CTRL.LLN0.LocSta and CONTROL function block input CTRL_STA are applicable for this station authority level. “Station” and “Local + Station” control access can be reserved by using R/L button or CONTROL function block in combination with IEC 61850 data object CTRL.LLN0.LocSta.
  • Page 171 1MRS758755 C Basic functions Table 192: CONTROL output signals Name Type Description BOOLEAN Control output OFF LOCAL BOOLEAN Control output Local STATION BOOLEAN Control output Station REMOTE BOOLEAN Control output Remote BOOLEAN Control output All BEH_BLK BOOLEAN Logical device CTRL block status BEH_TST BOOLEAN...
  • Page 172: Generic Control Point (16 Pcs) Spcgapc

    Basic functions 1MRS758755 C Name Type Values (Range) Unit Description 10=Object status only 11=Object direct 12=Object select 13=RL local allowed 14=RL remote allowed 15=RL off 16=Function off 17=Function blocked 18=Command progress 19=Select timeout 20=Missing authority 21=Close not enabled 22=Open not enabled 23=Internal fault 24=Already close 25=Wrong client...
  • Page 173 1MRS758755 C Basic functions 3.17.12.1 Function block Figure 101: Function block 3.17.12.2 Functionality The generic control points function SPCGAPC contains 16 independent control points. SPCGAPC offers the capability to activate its outputs through a local or remote control. The local control request can be issued through the buttons in the single-line diagram or via inputs and the remote control request through communication.
  • Page 174 Basic functions 1MRS758755 C mode is "Toggle", the output state freezes and cannot be changed while the BLOCK Operation mode is "Pulsed", the activation of the BLOCK input input is active. If resets the outputs to the "False" state and further control requests are ignored while the BLOCK input is active.
  • Page 175 1MRS758755 C Basic functions Name Type Default Description IN15 BOOLEAN 0=False Input of control point IN16 BOOLEAN 0=False Input of control point Table 196: SPCGAPC Output signals Name Type Description BOOLEAN Output 1 status BOOLEAN Output 2 status BOOLEAN Output 3 status BOOLEAN Output 4 status BOOLEAN...
  • Page 176 Basic functions 1MRS758755 C 3.17.12.4 Settings SPCGAPC Non group settings (Basic) Table 197: SPCGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Loc Rem restriction 0=False 1=True Local remote switch restriction 1=True Operation mode -1=Off Operation mode 0=Pulsed for generic control 1=Toggle/Persis-...
  • Page 177 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 1=Toggle/Persis- tent -1=Off Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCGAPC1 Output Generic control point description Operation mode -1=Off Operation mode 0=Pulsed for generic control 1=Toggle/Persis- point tent...
  • Page 178: Remote Generic Control Points Spcrgapc

    Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCGAPC1 Output Generic control point description Operation mode -1=Off Operation mode 0=Pulsed for generic control 1=Toggle/Persis- point tent -1=Off Pulse length 10...3600000...
  • Page 179 1MRS758755 C Basic functions 3.17.13.1 Function block Figure 103: Function block 3.17.13.2 Functionality The remote generic control points function SPCRGAPC is dedicated only for remote controlling, that is, SPCRGAPC cannot be controlled locally. The remote control is provided through communications. 3.17.13.3 Operation principle Operation setting.
  • Page 180 Basic functions 1MRS758755 C 3.17.13.4 Signals Table 198: SPCRGAPC Input signals Name Type Default Description BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode Table 199: SPCRGAPC Output signals Name Type Description BOOLEAN Output 1 status BOOLEAN Output 2 status BOOLEAN Output 3 status BOOLEAN...
  • Page 181 1MRS758755 C Basic functions 3.17.13.5 Settings Table 200: SPCRGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Loc Rem restriction 1=True Local remote switch restriction 0=False 1=True Operation mode -1=Off Operation mode for generic con- 0=Pulsed trol point 1=Toggle/Persistent -1=Off Pulse length...
  • Page 182 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 1=Toggle/Persistent -1=Off Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCRGAPC1 Output 8 Generic control point description Operation mode -1=Off Operation mode for generic con- 0=Pulsed trol point 1=Toggle/Persistent -1=Off...
  • Page 183: Local Generic Control Points Spclgapc

    1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description Description SPCRGAPC1 Output Generic control point description Operation mode -1=Off Operation mode for generic con- 0=Pulsed trol point 1=Toggle/Persistent -1=Off Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCRGAPC1 Output...
  • Page 184 Basic functions 1MRS758755 C active for the duration of the set pulse length. When activated, the additional activation command does not extend the length of pulse. Thus, the pulse needs to be ended before the new activation can occur. Description setting can be used for storing signal names for each output. Each control point or SPCLGAPC can only be accessed through the LHMI control.
  • Page 185 1MRS758755 C Basic functions 3.17.14.5 Settings Table 203: SPCLGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Loc Rem restriction 1=True Local remote switch restriction 0=False 1=True Operation mode -1=Off Operation mode for generic con- 0=Pulsed trol point 1=Toggle/Persistent -1=Off Pulse length...
  • Page 186 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 1=Toggle/Persistent -1=Off Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCLGAPC1 Output 8 Generic control point description Operation mode -1=Off Operation mode for generic con- 0=Pulsed trol point 1=Toggle/Persistent -1=Off...
  • Page 187: Programmable Buttons (4 Buttons) Fkey4Ggio

    1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description Description SPCLGAPC1 Output Generic control point description Operation mode -1=Off Operation mode for generic con- 0=Pulsed trol point 1=Toggle/Persistent -1=Off Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCLGAPC1 Output...
  • Page 188: Generic Up-Down Counter Udfcnt

    Basic functions 1MRS758755 C 3.17.15.5 Signals Table 204: FKEY4GGIO Input signals Name Type Default Description BOOLEAN 0=False LED 1 BOOLEAN 0=False LED 2 BOOLEAN 0=False LED 3 BOOLEAN 0=False LED 4 Table 205: FKEY4GGIO Output signals Name Type Description BOOLEAN KEY 1 BOOLEAN KEY 2...
  • Page 189 1MRS758755 C Basic functions 3.17.16 Generic up-down counter UDFCNT 3.17.16.1 Function block Figure 106: Function block 3.17.16.2 Functionality The multipurpose generic up-down counter function UDFCNT counts up or down for each positive edge of the corresponding inputs. The counter value output can be reset to zero or preset to some other value if required.
  • Page 190 Basic functions 1MRS758755 C The function also provides status outputs UPCNT_STS and DNCNT_STS. The UPCNT_STS is set to "True" when the CNT_VAL is greater than or equal to the setting Counter load value. DNCNT_STS is set to "True" when the CNT_VAL is zero. The RESET input is used for resetting the function.
  • Page 191: Factory Settings Restoration

    1MRS758755 C Basic functions 3.18 Factory settings restoration In case of configuration data loss or any other file system error that prevents the protection relay from working properly, the whole file system can be restored to the original factory state. All default settings and configuration files stored in the factory are restored.
  • Page 192 Basic functions 1MRS758755 C Disabled Quantity not selected Phase-to-phase 23 voltage Phase-to-phase 31 voltage Phase-to-earth 1 voltage Phase-to-earth 2 voltage Phase-to-earth 3 voltage U12B Phase-to-phase 12 voltage, B side U23B Phase-to-phase 23 voltage, B side U31B Phase-to-phase 31 voltage, B side UL1B Phase-to-earth 1 voltage, B side UL2B...
  • Page 193 1MRS758755 C Basic functions Demand interval  minute  minutes  minutes  minutes  minutes  minutes  minutes Amount of quantities Recording capability in days 15.2 75.8 151.6 227.4 454.9 909.7 2729.2 11.4 56.9 113.7 170.6 341.1 682.3 2046.9 45.5 91.0 136.5 272.9 545.8 1637.5 37.9 75.8 113.7...
  • Page 194: Configuration

    Basic functions 1MRS758755 C 192 . 168 . L D P 1 L D P 1 . C F G L D P 1 . D A T Figure 109: Load profile record file naming 3.19.2.4 Clearing of record Reset load profile rec via HMI, The load profile record can be cleared with communication or the ACT input in PCM600.
  • Page 195: Signals

    1MRS758755 C Basic functions the protection relay. The levels for MEM_WARN and MEM_ALARM are set by two Mem.warn level and Mem. Alarm level . parameters 3.19.4 Signals Table 213: LDPRLRC Output signals Name Type Description MEM_WARN BOOLEAN Recording memory warning status MEM_ALARM BOOLEAN...
  • Page 196: Settings

    Basic functions 1MRS758755 C 3.19.5 Settings 3.19.5.1 LDPRLRC Non group settings (Basic) Table 214: LDPRLRC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on Operation Off / On 1=on 5=off Quantity Sel 1 0=Disabled Select quantity to 0=Disabled be recorded 1=IL1...
  • Page 197 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled Select quantity to 0=Disabled be recorded 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B...
  • Page 198 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 33=PL2 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 3 0=Disabled Select quantity to 0=Disabled be recorded 1=IL1...
  • Page 199 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 26=PB 27=QB 28=PFB 29=SL1 30=SL2 31=SL3 32=PL1 33=PL2 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 4 0=Disabled...
  • Page 200 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 19=UL2B 20=UL3B 21=S 22=P 23=Q 24=PF 25=SB 26=PB 27=QB 28=PFB 29=SL1 30=SL2 31=SL3 32=PL1 33=PL2 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B...
  • Page 201 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 12=UL1 13=UL2 14=UL3 15=U12B 16=U23B 17=U31B 18=UL1B 19=UL2B 20=UL3B 21=S 22=P 23=Q 24=PF 25=SB 26=PB 27=QB 28=PFB 29=SL1 30=SL2 31=SL3 32=PL1 33=PL2 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B...
  • Page 202 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2 14=UL3 15=U12B 16=U23B 17=U31B 18=UL1B 19=UL2B 20=UL3B 21=S 22=P 23=Q 24=PF 25=SB 26=PB 27=QB 28=PFB 29=SL1 30=SL2 31=SL3 32=PL1 33=PL2 34=PL3 35=QL1 36=QL2...
  • Page 203 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 55=IL3C Quantity Sel 7 0=Disabled Select quantity to 0=Disabled be recorded 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2 14=UL3 15=U12B 16=U23B 17=U31B 18=UL1B 19=UL2B 20=UL3B 21=S...
  • Page 204 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 8 0=Disabled Select quantity to 0=Disabled be recorded 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2 14=UL3...
  • Page 205 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 9 0=Disabled Select quantity to 0=Disabled be recorded 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B...
  • Page 206 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 10 0=Disabled Select quantity to 0=Disabled be recorded 1=IL1...
  • Page 207 1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 27=QB 28=PFB 29=SL1 30=SL2 31=SL3 32=PL1 33=PL2 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 11 0=Disabled Select quantity to...
  • Page 208 Basic functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 20=UL3B 21=S 22=P 23=Q 24=PF 25=SB 26=PB 27=QB 28=PFB 29=SL1 30=SL2 31=SL3 32=PL1 33=PL2 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B...
  • Page 209: Monitored Data

    1MRS758755 C Basic functions Parameter Values (Range) Unit Step Default Description 13=UL2 14=UL3 15=U12B 16=U23B 17=U31B 18=UL1B 19=UL2B 20=UL3B 21=S 22=P 23=Q 24=PF 25=SB 26=PB 27=QB 28=PFB 29=SL1 30=SL2 31=SL3 32=PL1 33=PL2 34=PL3 35=QL1 36=QL2 37=QL3 38=PFL1 39=PFL2 40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B...
  • Page 210: Ethernet Channel Supervision Function Blocks

    Basic functions 1MRS758755 C 3.19.6 Monitored data 3.19.6.1 LDPRLRC Monitored data Table 215: LDPRLRC Monitored data Name Type Values (Range) Unit Description Rec. memory INT32 0...100 How much re- used cording memory is currently used 3.20 ETHERNET channel supervision function blocks 3.20.1 Redundant Ethernet channel supervision RCHLCCH 3.20.1.1...
  • Page 211: Ethernet Channel Supervision Schlcch

    1MRS758755 C Basic functions Parameter Values Unit Step Defaul Description (Range) LNKLIV Link status of redundant port LAN Redundant mode A. Valid only when Down is set to "HSR" or "PRP". REDLNKLIV Link status of redundant port LAN Redundant mode B.
  • Page 212 Basic functions 1MRS758755 C port from software, disabling the Ethernet communication in that port. Closing an unused Ethernet port enhances the cyber security of the relay. 3.20.2.3 Signals Table 218: SCHLCCH1 output signals Parameter Values Unit Step Defaul Description (Range) CH1LIV Status of Ethernet channel X1/LAN.
  • Page 213 1MRS758755 C Basic functions Table 221: Port mode settings Parameter Values (Range) Unit Step Default Description Port 1 Mode Mode selection for rear port(s). If port is not used, it can be set to “Off”. Port 2 Mode Mode selection for rear port(s). If port is not used, it can be set to “Off”.
  • Page 214: Protection Functions

    Protection functions 1MRS758755 C Protection functions Three-phase current protection 4.1.1 Three-phase non-directional overcurrent protection (F)PHxPTOC 4.1.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Three-phase non-directional over- (F)PHLPTOC 3I> 51P-1 current protection, low stage Three-phase non-directional over- PHHPTOC 3I>>...
  • Page 215 1MRS758755 C Protection functions In the DT mode, the function operates after a predefined operate time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics. The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.
  • Page 216 Protection functions 1MRS758755 C Figure 114: Start value behavior with ENA_MULT input activated Phase selection logic If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the measured current exceeds the setting. If the phase Num of start phases setting, the phase selection logic information matches the activates the timer module.
  • Page 217 1MRS758755 C Protection functions reset", the reset time depends on the current during the drop-off situation. The START output is deactivated when the reset timer has elapsed. The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.
  • Page 218 IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. One user programmable curve can be used if none of the standard curves are applicable. In addition to this, there are 39 curves for recloser applications.
  • Page 219 1MRS758755 C Protection functions Operating curve type (F)PHLPTOC PHHPTOC (14) IEC Long Time Inverse (15) IEC Definite Time (17) User programmable (18) RI type (19) RD type (-1)=Recloser 1(102) (-2)=Recloser 2 (135) (-3)=Recloser 3 (140) (-4)=Recloser 4 (106) (-5)=Recloser 5 (114) (-6)=Recloser 6 (136) (-7)=Recloser 7 (152) (-8)=Recloser 8 (113)
  • Page 220 Protection functions 1MRS758755 C Operating curve type (F)PHLPTOC PHHPTOC (-23)=Recloser E (132) (-24)=Recloser F (163) (-25)=Recloser G (121) (-26)=Recloser H (122) (-27)=Recloser J (164) (-28)=Recloser Kg (165) (-29)=Recloser Kp (162) (-30)=Recloser L (107) (-31)=Recloser M (118) (-32)=Recloser N (104) (-33)=Recloser P (115) (-34)=Recloser R (105) (-35)=Recloser T (161) (-36)=Recloser V (137)
  • Page 221 1MRS758755 C Protection functions Type of reset curve setting does not apply to PHIPTOC or when the Reset delay DT operation is selected. The reset is purely defined by the time setting. 4.1.1.7 Application (F)PHxPTOC is used in several applications in the power system. The applications include but are not limited to: •...
  • Page 222 Protection functions 1MRS758755 C into account the selectivity requirements, switching-in currents, and the thermal and mechanical withstand of the transformer and outgoing feeders. Traditionally, overcurrent protection of the transformer has been arranged as shown Figure 115 . The low-set stage (F)PHLPTOC operates time-selectively both in transformer and LV-side busbar faults.
  • Page 223 1MRS758755 C Protection functions on the transformer HV and LV-sides provide increased security degree of backup protection for the transformer, busbar and also for the outgoing feeders. Depending on the overcurrent stage in question, the selectivity of the scheme in Figure 116 is based on the operating current, operating time or blockings between successive overcurrent stages.
  • Page 224 Protection functions 1MRS758755 C Figure 116: Numerical overcurrent protection functionality for a typical sub- transmission/distribution substation (feeder protection not shown). Blocking output = digital output signal from the start of a protection stage, Blocking in = digital input signal to block the operation of a protection stage The operating times of the time selective stages are very short, because the grading margins between successive protection stages can be kept short.
  • Page 225 1MRS758755 C Protection functions In many cases the above requirements can be best fulfilled by using multiple-stage Figure 117 overcurrent units. shows an example of this. A brief coordination study has been carried out between the incoming and outgoing feeders. The protection scheme is implemented with three-stage numerical overcurrent protection, where the low-set stage (F)PHLPTOC operates in IDMT-mode and the two higher stages PHHPTOC and PHIPTOC in DT-mode.
  • Page 226 Protection functions 1MRS758755 C Figure 118: Example coordination of numerical multiple-stage overcurrent protection 4.1.1.8 Signals Table 226: FPHLPTOC Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode ENA_MULT...
  • Page 227 1MRS758755 C Protection functions Table 228: PHHPTOC Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode ENA_MULT BOOLEAN 0=False Enable signal for cur- rent multiplier Table 229: PHIPTOC Input signals Name...
  • Page 228 Protection functions 1MRS758755 C 4.1.1.9 Settings Table 234: FPHLPTOC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.05...5.00 0.01 0.05 Start value Start value Mult 0.8...10.0 Multiplier for scaling the start value Time multiplier 0.05...15.00 0.01 Time multiplier in IEC/ANSI IDMT curves Operate delay time...
  • Page 229 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description -21=Recloser C -22=Recloser D -23=Recloser E -24=Recloser F -25=Recloser G -26=Recloser H -27=Recloser J -28=Recloser Kg -29=Recloser Kp -30=Recloser L -31=Recloser M -32=Recloser N -33=Recloser P -34=Recloser R -35=Recloser T -36=Recloser V -37=Recloser W -38=Recloser Y...
  • Page 230 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Curve parameter D 0.46...30.00 29.10 Parameter D for customer program- mable curve Curve parameter E 0.0...1.0 Parameter E for customer program- mable curve Table 236: FPHLPTOC Non group settings (Advanced) Parameter Values (Range) Unit...
  • Page 231 1MRS758755 C Protection functions Table 239: PHLPTOC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on 1=on Operation Off / On 5=off Num of start pha- 1=1 out of 3 1=1 out of 3 Number of phases required for oper- 2=2 out of 3 ate activation...
  • Page 232 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 17=Programmable Table 242: PHHPTOC Group settings (Advanced) Parameter Values (Range) Unit Step Default Description Type of reset curve 1=Immediate 1=Immediate Selection of reset curve type 2=Def time reset 3=Inverse reset Table 243: PHHPTOC Non group settings (Basic) Parameter Values (Range)
  • Page 233 1MRS758755 C Protection functions Table 246: PHIPTOC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on 1=on Operation Off / On 5=off Num of start pha- 1=1 out of 3 1=1 out of 3 Number of phases required for oper- 2=2 out of 3 ate activation...
  • Page 234 Protection functions 1MRS758755 C Table 250: PHHPTOC Monitored data Name Type Values (Range) Unit Description START_DUR FLOAT32 0.00...100.00 Ratio of start time / operate time PHHPTOC Enum Status 1=on 2=blocked 3=test 4=test/blocked 5=off Table 251: PHIPTOC Monitored data Name Type Values (Range) Unit Description...
  • Page 235 1MRS758755 C Protection functions Characteristic Value Start = 10 × set Fault value PHHPTOC and 23 ms 26 ms 29 ms (F)PHLPTOC: Start val- = 2 × set Fault Reset time Typically 40 ms Reset ratio Typically 0.96 Retardation time <30 ms Operate time accuracy in definite time mode ±1.0% of the set value or ±20 ms...
  • Page 236: Three-Phase Directional Overcurrent Protection (F)Dphxpdoc

    Protection functions 1MRS758755 C Technical revision Change Internal improvement Internal improvement Table 255: (F)PHLPTOC Technical revision history Technical revision Change Minimum and default values changed to 40 Operate delay time setting ms for the Step value changed from 0.05 to 0.01 for the Time multiplier setting Internal improvement Internal improvement...
  • Page 237 1MRS758755 C Protection functions 4.1.2.3 Functionality The three-phase overcurrent protection function (F)DPHxPDOC is used as one-phase, two-phase or three-phase directional overcurrent and short-circuit protection for feeders. (F)DPHxPDOC starts up when the value of the current exceeds the set limit and directional criterion is fulfilled.
  • Page 238 Protection functions 1MRS758755 C Directional calculation The directional calculation compares the current phasors to the polarizing phasor. A suitable polarization quantity can be selected from the different polarization quantities, which are the positive sequence voltage, negative sequence voltage, self-polarizing (faulted) voltage and cross-polarizing voltages (healthy voltages). The polarizing method is defined with the Pol quantity setting.
  • Page 239 1MRS758755 C Protection functions Min operate voltage setting should be carefully selected The value for the since the accuracy in low signal levels is strongly affected by the measuring device accuracy. Min operate voltage at a close fault, the fictive voltage When the voltage falls below is used to determine the phase angle.
  • Page 240 Protection functions 1MRS758755 C Start of the value to the phase selection logic. If the ENA_MULT input is active, the value setting is multiplied by the Start value Mult setting. Start value or Start value Mult The protection relay does not accept the Start value setting setting if the product of these settings exceeds the range.
  • Page 241 1MRS758755 C Protection functions If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the timer reset state is activated. The functionality of Operating curve the timer in the reset state depends on the combination of the type , Type of reset curve and Reset delay time settings.
  • Page 242 Protection functions 1MRS758755 C Table 257: Measurement modes supported by (F)DPHxPDOC stages Measurement mode (F)DPHLPDOC DPHHPDOC Peak-to-Peak 4.1.2.6 Directional overcurrent characteristics The forward and reverse sectors are defined separately. The forward operation area Min forward angle and Max forward angle settings. The reverse is limited with the operation area is limited with the Min reverse angle and Max reverse angle settings.
  • Page 243 1MRS758755 C Protection functions Figure 123: Configurable operating sectors Table 258: Momentary per phase direction value for monitored data view Criterion for per phase direction information The value for DIR_A/_B/_C The ANGLE_X is not in any of the defined sectors, or the direc- 0 = unknown tion cannot be defined due too low amplitude The ANGLE_X is in the forward sector...
  • Page 244 Protection functions 1MRS758755 C Self-polarizing as polarizing method Table 260: Equations for calculating angle difference for self-polarizing method Faulted Used Used Angle difference phases fault polarizing current voltage ANGLE A = ϕ ϕ ϕ ANGLE B = ϕ ϕ ϕ ANGLE C = ϕ...
  • Page 245 1MRS758755 C Protection functions Figure 125: Two-phase short circuit, short circuit is between phases B and C Cross-polarizing as polarizing quantity Table 261: Equations for calculating angle difference for cross-polarizing method Faulted Used Used Angle difference phases fault polarizing current voltage ANGLE A ϕ...
  • Page 246 Protection functions 1MRS758755 C Figure 126: Single-phase earth fault, phase A In an example of the phasors in a two-phase short-circuit failure where the fault is between the phases B and C, the angle difference is measured between the polarizing quantity U and operating quantity I marked as φ.
  • Page 247 1MRS758755 C Protection functions Figure 127: Two-phase short circuit, short circuit is between phases B and C The equations are valid when network rotating direction is counter- clockwise, that is, ABC. If the network rotating direction is reversed, 180 degrees is added to the calculated angle difference. This is done Phase rotation .
  • Page 248 Protection functions 1MRS758755 C Figure 128: Phasors in a single-phase earth fault, phases A-N, and two-phase short circuit, phases B and C, when the actuating polarizing quantity is the negative- sequence voltage -U2 Positive sequence voltage as polarizing quantity Table 262: Equations for calculating angle difference for positive-sequence quanti- ty polarizing method Faulted Used...
  • Page 249 1MRS758755 C Protection functions -90° Figure 129: Phasors in a single-phase earth fault, phase A to ground, and a two- phase short circuit, phases B-C, are short-circuited when the polarizing quantity is the positive-sequence voltage U 1 Network rotation direction Typically, the network rotating direction is counter-clockwise and defined as "ABC".
  • Page 250 Protection functions 1MRS758755 C NETWORK ROTATION ABC NETWORK ROTATION ACB Figure 130: Examples of network rotating direction 4.1.2.7 Application (F)DPHxPDOC is used as short-circuit protection in three-phase distribution or sub transmission networks operating at 50 or 60 Hz. In radial networks, phase overcurrent protection relays are often sufficient for the short circuit protection of lines, transformers and other equipment.
  • Page 251 1MRS758755 C Protection functions Figure 131: Overcurrent protection of parallel lines using directional protection relays (F)DPHxPDOC can be used for parallel operating transformer applications. In these applications, there is a possibility that the fault current can also be fed from the LV- side up to the HV-side.
  • Page 252 Protection functions 1MRS758755 C Figure 133: Closed ring network topology where feeding lines are protected with directional overcurrent protection relays 4.1.2.8 Signals Table 263: FDPHLPDOC Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current SIGNAL Negative phase se-...
  • Page 253 1MRS758755 C Protection functions Name Type Default Description SIGNAL Negative phase se- quence voltage BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode ENA_MULT BOOLEAN 0=False Enabling signal for current multiplier NON_DIR BOOLEAN 0=False Forces protection to non-directional Table 264: DPHLPDOC Input signals Name Type...
  • Page 254 Protection functions 1MRS758755 C Name Type Default Description SIGNAL Negative phase se- quence current U_A_AB SIGNAL Phase to earth volt- age A or phase to phase voltage AB U_B_BC SIGNAL Phase to earth volt- age B or phase to phase voltage BC U_C_CA SIGNAL Phase to earth volt-...
  • Page 255 1MRS758755 C Protection functions 4.1.2.9 Settings Table 269: FDPHLPDOC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.05...5.00 0.01 0.05 Start value Operate delay time 40...200000 Operate delay time Operating curve 1=ANSI Ext. inv. 15=IEC Def. Time Selection of time delay curve type type...
  • Page 256 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description -27=Recloser J -28=Recloser Kg -29=Recloser Kp -30=Recloser L -31=Recloser M -32=Recloser N -33=Recloser P -34=Recloser R -35=Recloser T -36=Recloser V -37=Recloser W -38=Recloser Y -39=Recloser Z Voltage Mem time 0...3000 Voltage memory time Directional mode...
  • Page 257 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description 5=off Num of start pha- 1=1 out of 3 1=1 out of 3 Number of phases required for operate activation 2=2 out of 3 3=3 out of 3 Curve parameter A 0.0086...120.0000 28.2000 Parameter A for customer...
  • Page 258 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 8=L.T. inv. 9=IEC Norm. inv. 10=IEC Very inv. 11=IEC inv. 12=IEC Ext. inv. 13=IEC S.T. inv. 14=IEC L.T. inv. 15=IEC Def. Time 17=Programmable 18=RI type 19=RD type Directional mode 1=Non-directional 2=Forward Directional mode...
  • Page 259 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Curve parameter B 0.0000...0.7120 0.1217 Parameter B for customer program- mable curve Curve parameter C 0.02...2.00 2.00 Parameter C for customer program- mable curve Curve parameter D 0.46...30.00 29.10 Parameter D for customer program- mable curve...
  • Page 260 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Max forward angle 0...90 Maximum phase angle in forward direction Max reverse angle 0...90 Maximum phase angle in reverse direction Min forward angle 0...90 Minimum phase angle in forward direction Min reverse angle 0...90 Minimum phase angle in...
  • Page 261 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Allow Non Dir 0=False 0=False Allows prot activation as non-dir when dir info is in- 1=True valid Measurement 1=RMS 2=DFT Selects used measure- mode ment mode 2=DFT 3=Peak-to-Peak Min operate cur- 0.01...1.00 0.01 0.01...
  • Page 262 Protection functions 1MRS758755 C Name Type Values (Range) Unit Description ANGLE_A FLOAT32 -180.00...180.00 Calculated angle difference, Phase ANGLE_B FLOAT32 -180.00...180.00 Calculated angle difference, Phase ANGLE_C FLOAT32 -180.00...180.00 Calculated angle difference, Phase VMEM_USED BOOLEAN Voltage memory 0=False in use status 1=True FDPHLPDOC Enum Status...
  • Page 263 1MRS758755 C Protection functions Name Type Values (Range) Unit Description -1=both DIR_C Enum Direction phase 0=unknown 1=forward 2=backward -1=both ANGLE_A FLOAT32 -180.00...180.00 Calculated angle difference, Phase ANGLE_B FLOAT32 -180.00...180.00 Calculated angle difference, Phase ANGLE_C FLOAT32 -180.00...180.00 Calculated angle difference, Phase VMEM_USED BOOLEAN Voltage memory...
  • Page 264 Protection functions 1MRS758755 C Name Type Values (Range) Unit Description DIR_A Enum 0=unknown Direction phase 1=forward 2=backward -1=both DIR_B Enum 0=unknown Direction phase 1=forward 2=backward -1=both DIR_C Enum 0=unknown Direction phase 1=forward 2=backward -1=both ANGLE_A FLOAT32 -180.00...180.00 Calculated angle difference, Phase ANGLE_B FLOAT32 -180.00...180.00...
  • Page 265 1MRS758755 C Protection functions Characteristic Value ±1.5% of the set value or ±0.002 × I Voltage: ±1.5% of the set value or ±0.002 × U Phase angle: ±2° DPHHPDOC Current: ±1.5% of the set value or ±0.002 × I (at currents in the range of 0.1…10 × I ±5.0% of the set value (at currents in the range of 10…40 ×...
  • Page 266: Three-Phase Thermal Protection For Feeders, Cables And Distribution Transformers T1Pttr

    Protection functions 1MRS758755 C Table 286: (F)DPHLPDOC Technical revision history Technical revision Change Added a new input NON_DIR Step value changed from 0.05 to 0.01 for the Time multiplier setting. Monitored data VMEM_USED indicating volt- age memory use. Internal improvement. 4.1.3 Three-phase thermal protection for feeders, cables and distribution transformers T1PTTR...
  • Page 267 1MRS758755 C Protection functions Re-energizing of the line after the thermal overload operation can be inhibited during the time the cooling of the line is in progress. The cooling of the line is estimated by the thermal model. 4.1.3.4 Operation principle Operation setting.
  • Page 268 Protection functions 1MRS758755 C Maximum temperature , the START output is estimation is larger than the set activated. Current reference and Temperature rise setting values are used in the final temperature estimation together with the ambient temperature. It is suggested to set these values to the maximum steady state current allowed for the line or cable under emergency operation for a few hours per years.
  • Page 269 1MRS758755 C Protection functions The time to lockout release is calculated, that is, the calculation of the cooling time Initial to a set value. The calculated temperature can be reset to its initial value (the temperature setting) via a control parameter that is located under the clear menu. This is useful during testing when secondary injected current has given a calculated false temperature level.
  • Page 270 Protection functions 1MRS758755 C In stressed situations in the power system, the lines and cables may be required to be overloaded for a limited time. This should be done without any risk for the above-mentioned risks. The thermal overload protection provides information that makes temporary overloading of cables and lines possible.
  • Page 271 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description ature measurement available Current reference 0.05...4.00 0.01 1.00 The load current leading to Temper- ature raise temper- ature Temperature rise 0.0...200.0 °C 75.0 End temperature rise above ambient Time constant 60...60000 2700 Time constant of...
  • Page 272: Loss Of Phase, Undercurrent Phptuc

    Protection functions 1MRS758755 C Name Type Values (Range) Unit Description T_ENA_CLOSE INT32 0...60000 Estimated time to deactivate BLK_CLOSE TEMP_AMB FLOAT32 -99...999 °C The ambient temperature used in the calcu- lation T1PTTR Enum Status 1=on 2=blocked 3=test 4=test/blocked 5=off 4.1.3.9 Technical data Table 294: T1PTTR Technical data Characteristic Value...
  • Page 273 1MRS758755 C Protection functions 4.1.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Loss of phase, under- PHPTUC 3I< current 4.1.4.2 Function block Figure 136: Function block 4.1.4.3 Functionality The loss of phase, undercurrent, protection function PHPTUC is used to detect an undercurrent that is considered as a fault condition.
  • Page 274 Protection functions 1MRS758755 C Figure 137: Functional module diagram Level detector 1 Start value setting. This module compares the phase currents (RMS value) to the Operation mode setting can be used to select the "Three Phase" or "Single Phase" mode. If in the "Three Phase"...
  • Page 275 1MRS758755 C Protection functions 4.1.4.5 Application In some cases, smaller distribution power transformers are used where the high- side protection involves only power fuses. When one of the high-side fuses blows in a single-phase condition, knowledge of it on the secondary side is lacking. The resulting negative-sequence current leads to a premature failure due to excessive heating and breakdown of the transformer insulation.
  • Page 276 Protection functions 1MRS758755 C Name Type Description ST_B BOOLEAN Start phase B ST_C BOOLEAN Start phase C 4.1.4.7 Settings Table 298: PHPTUC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Current block value 0.00...0.50 0.01 0.10 Low current setting to block in- ternally Start value 0.01...1.00...
  • Page 277: Earth-Fault Protection

    1MRS758755 C Protection functions 4.1.4.9 Technical data Table 302: PHPTUC Technical data Characteristic Value Operation accuracy Depending on the frequency of the current measured: f ±2 Hz ±1.5% of the set value or ±0.002 × I Start time Typically <55 ms Reset time <40 ms Reset ratio...
  • Page 278 Protection functions 1MRS758755 C 4.2.1.3 Functionality The earth-fault function (F)EFxPTOC is used as non-directional earth-fault protection for feeders. The function starts and operates when the residual current exceeds the set limit. The operate time characteristic for low stage (F)EFLPTOC and high stage EFHPTOC can be selected to be either definite time (DT) or inverse definite minimum time (IDMT).
  • Page 279 1MRS758755 C Protection functions mode or the maximum value defined by the inverse time curve, the OPERATE output is activated. When the user-programmable IDMT curve is selected, the operation time Curve parameter A , Curve parameter characteristics are defined by the parameters B , Curve parameter C , Curve parameter D and Curve parameter E .
  • Page 280 IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. One user programmable curve can be used if none of the standard curves are applicable. In addition to this, there are 39 curves for recloser applications.
  • Page 281 1MRS758755 C Protection functions Operating curve type (F)EFLPTOC EFHPTOC (11) IEC Inverse (12) IEC Extremely Inverse (13) IEC Short Time Inverse (14) IEC Long Time Inverse (15) IEC Definite Time (17) User programmable (18) RI type (19) RD type (-1)=Recloser 1(102) (-2)=Recloser 2 (135) (-3)=Recloser 3 (140) (-4)=Recloser 4 (106)
  • Page 282 Protection functions 1MRS758755 C Operating curve type (F)EFLPTOC EFHPTOC (-20)=Recloser B (117) (-21)=Recloser C (133) (-22)=Recloser D (116) (-23)=Recloser E (132) (-24)=Recloser F (163) (-25)=Recloser G (121) (-26)=Recloser H (122) (-27)=Recloser J (164) (-28)=Recloser Kg (165) (-29)=Recloser Kp (162) (-30)=Recloser L (107) (-31)=Recloser M (118) (-32)=Recloser N (104) (-33)=Recloser P (115)
  • Page 283 1MRS758755 C Protection functions Table 305: Reset time characteristics supported by different stages Reset curve type (F)EFLPTOC EFHPTOC Note (1) Immediate Available for all operate time curves (2) Def time reset Available for all operate time curves (3) Inverse reset Available only for ANSI and user pro- grammable curves Type of reset curve setting does not apply to EFIPTOC or when the...
  • Page 284 Protection functions 1MRS758755 C Table 307: EFLPTOC Input signals Name Type Default Description SIGNAL Residual current BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode ENA_MULT BOOLEAN 0=False Enable signal for cur- rent multiplier Table 308: EFHPTOC Input signals Name Type Default...
  • Page 285 1MRS758755 C Protection functions Table 313: EFIPTOC Output signals Name Type Description OPERATE BOOLEAN Operate START BOOLEAN Start 4.2.1.9 Settings Table 314: FEFLPTOC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.010...5.000 0.005 0.010 Start value Start value Mult 0.8...10.0 Multiplier for scal-...
  • Page 286 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description (152) -8=Recloser 8 (113) -9=Recloser 8+ (111) -10=Recloser 8* -11=Recloser 9 (131) -12=Recloser 11 (141) -13=Recloser 13 (142) -14=Recloser 14 (119) -15=Recloser 15 (112) -16=Recloser 16 (139) -17=Recloser 17 (103) -18=Recloser 18 (151)
  • Page 287 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description -38=Recloser Y (120) -39=Recloser Z (134) Table 315: FEFLPTOC Group settings (Advanced) Parameter Values (Range) Unit Step Default Description Type of reset curve 1=Immediate 1=Immediate Selection of reset curve type 2=Def time reset 3=Inverse reset Table 316: FEFLPTOC Non group settings (Basic)
  • Page 288 Protection functions 1MRS758755 C Table 318: EFLPTOC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.010...5.000 0.005 0.010 Start value Start value Mult 0.8...10.0 Multiplier for scal- ing the start value Time multiplier 0.05...15.00 0.01 1.00 Time multiplier in IEC/ANSI IDMT curves...
  • Page 289 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Curve parameter D 0.46...30.00 29.10 Parameter D for customer program- mable curve Curve parameter E 0.0...1.0 Parameter E for customer program- mable curve Table 321: EFLPTOC Non group settings (Advanced) Parameter Values (Range) Unit...
  • Page 290 Protection functions 1MRS758755 C Table 324: EFHPTOC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on 1=on Operation Off / On 5=off Curve parameter A 0.0086...120.0000 28.2000 Parameter A for customer program- mable curve Curve parameter B 0.0000...0.7120 0.1217 Parameter B for...
  • Page 291 1MRS758755 C Protection functions Table 328: EFIPTOC Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Reset delay time 0...60000 Reset delay time Io signal Sel 1=Measured Io 1=Measured Io Selection for used Io signal 2=Calculated Io 4.2.1.10 Monitored data Table 329: FEFLPTOC Monitored data Name...
  • Page 292 Protection functions 1MRS758755 C Name Type Values (Range) Unit Description 4=test/blocked 5=off Table 332: EFIPTOC Monitored data Name Type Values (Range) Unit Description START_DUR FLOAT32 0.00...100.00 Ratio of start time / operate time EFIPTOC Enum 1=on Status 2=blocked 3=test 4=test/blocked 5=off 4.2.1.11 Technical data...
  • Page 293 1MRS758755 C Protection functions Characteristic Value Reset ratio Typically 0.96 Retardation time <30 ms Operate time accuracy in definite time mode ±1.0% of the set value or ±20 ms Operate time accuracy in inverse time mode ±5.0% of the theoretical value or ±20 ms ±5.0% of the theoretical value or ±40 ms Suppression of harmonics RMS: No suppression...
  • Page 294: Directional Earth-Fault Protection (F)Defxpdef

    Protection functions 1MRS758755 C Table 336: (F)EFLPTOC Technical revision history Technical revision Change The minimum and default values changed to Operate delay time setting 40 ms for the Start value step changed to 0.005 Added a setting parameter for the "Measured Io"...
  • Page 295 1MRS758755 C Protection functions In the DT mode, the function operates after a predefined operate time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics. The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.
  • Page 296 Protection functions 1MRS758755 C current Io: Configuration > Analog inputs > Current (Io,CT): 100 A : 1 A. The Residual voltage Uo: Configuration > Analog inputs > Voltage (Uo,VT): 11.547 kV : 100 V. The Start value of 1.0 × In corresponds to 1.0 * 100 A = 100 A in the primary. The Voltage start value of 1.0 ×...
  • Page 297 1MRS758755 C Protection functions Table 337: Operation modes Operation mode Description Phase angle The operating sectors for forward and reverse are defined with Min forward angle , Max forward angle , Min reverse the settings angle and Max reverse angle . IoSin The operating sectors are defined as "forward"...
  • Page 298 Protection functions 1MRS758755 C Pol reversal to The polarity of the polarizing quantity can be reversed by setting the "True", which turns the polarizing quantity by 180 degrees. For definitions of different directional earth-fault characteristics, see Chapter 4.2.2.8 Directional earth-fault characteristics in this manual.
  • Page 299 1MRS758755 C Protection functions type , Type of reset curve and Reset delay time settings. When the DT characteristic Reset delay time value is exceeded. is selected, the reset timer runs until the set Type of reset curve setting can be set to When the IDMT curves are selected, the "Immediate", "Def time reset"...
  • Page 300 Protection functions 1MRS758755 C polarizing quantity is in phase with the maximum torque line, RCA is 0 degrees. The angle is positive if the operating current lags the polarizing quantity and negative if it leads the polarizing quantity. Example 1 The "Phase angle"...
  • Page 301 1MRS758755 C Protection functions Figure 143: Definition of the relay characteristic angle, RCA=+60 degrees in a solidly earthed network Example 3 The "Phase angle" mode is selected, isolated network (φRCA = -90 deg) Characteristic angle = -90 deg => REC615 & RER615 Technical Manual...
  • Page 302 Protection functions 1MRS758755 C Figure 144: Definition of the relay characteristic angle, RCA=–90 degrees in an isolated network Directional earth-fault protection in an isolated neutral network In isolated networks, there is no intentional connection between the system neutral point and earth. The only connection is through the phase-to-earth capacitances (C ) of phases and leakage resistances (R ).
  • Page 303 1MRS758755 C Protection functions Figure 145: Earth-fault situation in an isolated network Directional earth-fault protection in a compensated network In compensated networks, the capacitive fault current and the inductive resonance coil current compensate each other. The protection cannot be based on the reactive current measurement, since the current of the compensation coil would disturb the operation of the protection relays.
  • Page 304 Protection functions 1MRS758755 C Figure 146: Earth-fault situation in a compensated network The Petersen coil or the earthing resistor may be temporarily out of operation. To Characteristic keep the protection scheme selective, it is necessary to update the angle setting accordingly. This can be done with an auxiliary input in the protection relay which receives a signal from an auxiliary switch of the disconnector of the Petersen coil in compensated networks.
  • Page 305 1MRS758755 C Protection functions groups or the RCA_CTL input. Alternatively, the operating sector of the directional earth-fault protection function can be extended to cover the operating sectors of both neutral earthing principles. Such characteristic is valid for both unearthed and compensated network and does not require any modification in case the neutral earthing changes temporarily from the unearthed to compensated network or vice versa.
  • Page 306 IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. One user programmable curve can be used if none of the standard curves are applicable. In addition to this, there are 39 curves for recloser applications.
  • Page 307 1MRS758755 C Protection functions Operating curve type (F)DEFLPDEF DEFHPDEF (17) User programmable (18) RI type (19) RD type (-1)=Recloser 1(102) (-2)=Recloser 2 (135) (-3)=Recloser 3 (140) (-4)=Recloser 4 (106) (-5)=Recloser 5 (114) (-6)=Recloser 6 (136) (-7)=Recloser 7 (152) (-8)=Recloser 8 (113) (-9)=Recloser 8+ (111) (-10)=Recloser 8* (-11)=Recloser 9 (131)
  • Page 308 Protection functions 1MRS758755 C Operating curve type (F)DEFLPDEF DEFHPDEF (-25)=Recloser G (121) (-26)=Recloser H (122) (-27)=Recloser J (164) (-28)=Recloser Kg (165) (-29)=Recloser Kp (162) (-30)=Recloser L (107) (-31)=Recloser M (118) (-32)=Recloser N (104) (-33)=Recloser P (115) (-34)=Recloser R (105) (-35)=Recloser T (161) (-36)=Recloser V (137) (-37)=Recloser W (138) (-38)=Recloser Y (120)
  • Page 309 1MRS758755 C Protection functions The forward and reverse sectors are defined separately. The forward operation area Min forward angle and Max forward angle settings. The reverse is limited with the Min reverse angle and Max reverse angle settings. operation area is limited with the The sector limits are always given as positive degree values.
  • Page 310 Protection functions 1MRS758755 C Table 344: Momentary operating direction Fault direction The value for DIRECTION Angle between the polarizing and operating 0 = unknown quantity is not in any of the defined sectors. Angle between the polarizing and operating 1= forward quantity is in the forward sector.
  • Page 311 1MRS758755 C Protection functions Min operate voltage settings. In case of low magnitude, the FAULT_DIR and Allow non dir setting DIRECTION outputs are set to 0 = unknown, except when the is "True". In that case, the function is allowed to operate in the directional mode as non-directional, since the directional information is invalid.
  • Page 312 Protection functions 1MRS758755 C Figure 150: Operating characteristic Iosin(φ) in reverse fault Example 3. Iocos(φ) criterion selected, forward-type fault => FAULT_DIR = 1 REC615 & RER615 Technical Manual...
  • Page 313 1MRS758755 C Protection functions Figure 151: Operating characteristic Iocos(φ) in forward fault Example 4. Iocos(φ) criterion selected, reverse-type fault => FAULT_DIR = 2 REC615 & RER615 Technical Manual...
  • Page 314 Protection functions 1MRS758755 C Figure 152: Operating characteristic Iocos(φ) in reverse fault Phase angle 80 Operation mode setting The operation criterion phase angle 80 is selected with the by using the value "Phase angle 80". Phase angle 80 implements the same functionality as the phase angle but with the following differences: Max forward angle and Max reverse angle settings cannot be set but they •...
  • Page 315 1MRS758755 C Protection functions Figure 153: Operating characteristic for phase angle 80 Io / % of I Min forward angle 80 deg Operating zone 3% of In 70 deg Non- 1% of In operating zone Figure 154: Phase angle 80 amplitude ( Directional mode = Forward) Phase angle 88 Operation mode setting The operation criterion phase angle 88 is selected with the...
  • Page 316 Protection functions 1MRS758755 C Phase angle 88 implements the same functionality as the phase angle but with the following differences: Max forward angle and Max reverse angle settings cannot be set but they • The have a fixed value of 88 degrees •...
  • Page 317 1MRS758755 C Protection functions Io / % of I 88 deg 100% of In Min forward angle 85 deg 20% of In 73 deg 1% of In Figure 156: Phase angle 88 amplitude ( Directional mode = Forward) 4.2.2.9 Application The directional earth-fault protection (F)DEFxPDEF is designed for protection and clearance of earth faults and for earth-fault protection of different equipment connected to the power systems, such as shunt capacitor banks or shunt reactors,...
  • Page 318 Protection functions 1MRS758755 C In isolated networks, there is no intentional connection between the system neutral point and earth. The only connection is through the line-to-earth capacitances (C ) of phases and leakage resistances (R ). This means that the residual current is mainly capacitive and has -90 degrees phase shift compared to the residual voltage (-Uo).
  • Page 319 1MRS758755 C Protection functions Figure 157: Connection of measuring transformers 4.2.2.10 Signals Table 346: DEFLPDEF Input signals Name Type Default Description SIGNAL Residual current SIGNAL Residual voltage BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode ENA_MULT BOOLEAN 0=False Enable signal for cur- rent multiplier...
  • Page 320 Protection functions 1MRS758755 C Name Type Default Description BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode ENA_MULT BOOLEAN 0=False Enable signal for cur- rent multiplier RCA_CTL BOOLEAN 0=False Relay characteristic angle control Table 348: DEFHPDEF Input signals Name Type Default...
  • Page 321 1MRS758755 C Protection functions 4.2.2.11 Settings Table 352: DEFLPDEF Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.010...5.000 0.005 0.010 Start value Start value Mult 0.8...10.0 Multiplier for scal- ing the start value Directional mode 2=Forward Directional mode 1=Non-directional 2=Forward...
  • Page 322 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 3=Inverse reset Operation mode 1=Phase angle Operation criteria 1=Phase angle 2=IoSin 3=IoCos 4=Phase angle 80 5=Phase angle 88 Enable voltage limit 0=False 1=True Enable voltage limit 1=True Table 354: DEFLPDEF Non group settings (Basic) Parameter Values (Range) Unit...
  • Page 323 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Uo signal Sel 1=Measured Uo Selection for used 1=Measured Uo Uo signal 2=Calculated Uo Pol quantity 3=Zero seq. volt. Reference quantity 3=Zero seq. volt. used to determine 4=Neg. seq. volt. fault direction Table 356: FDEFLPDEF Group settings (Basic) Parameter...
  • Page 324 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description -8=Recloser 8 (113) -9=Recloser 8+ (111) -10=Recloser 8* -11=Recloser 9 (131) -12=Recloser 11 (141) -13=Recloser 13 (142) -14=Recloser 14 (119) -15=Recloser 15 (112) -16=Recloser 16 (139) -17=Recloser 17 (103) -18=Recloser 18 (151) -19=Recloser A (101)
  • Page 325 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description -39=Recloser Z (134) Operate delay time 50...200000 Operate delay time Characteristic an- -179...180 Characteristic an- Max forward angle 0...180 Maximum phase angle in forward di- rection Max reverse angle 0...180 Maximum phase angle in reverse di-...
  • Page 326 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Curve parameter D 0.46...30.00 29.10 Parameter D for customer program- mable curve Curve parameter E 0.0...1.0 Parameter E for customer program- mable curve Table 359: FDEFLPDEF Non group settings (Advanced) Parameter Values (Range) Unit...
  • Page 327 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Operating curve 1=ANSI Ext. inv. 15=IEC Def. Time Selection of time type delay curve type 3=ANSI Norm. inv. 5=ANSI Def. Time 15=IEC Def. Time 17=Programmable Operate delay time 40...200000 Operate delay time Characteristic an- -179...180...
  • Page 328 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Curve parameter D 0.46...30.00 29.10 Parameter D for customer program- mable curve Curve parameter E 0.0...1.0 Parameter E for customer program- mable curve Table 363: DEFHPDEF Non group settings (Advanced) Parameter Values (Range) Unit...
  • Page 329 1MRS758755 C Protection functions Name Type Values (Range) Unit Description 3=both START_DUR FLOAT32 0.00...100.00 Ratio of start time / operate time DIRECTION Enum Direction infor- 0=unknown mation 1=forward 2=backward 3=both ANGLE_RCA FLOAT32 -180.00...180.00 Angle between operating angle and characteris- tic angle ANGLE FLOAT32 -180.00...180.00...
  • Page 330 Protection functions 1MRS758755 C Name Type Values (Range) Unit Description ANGLE_RCA FLOAT32 -180.00...180.00 Angle between operating angle and characteris- tic angle ANGLE FLOAT32 -180.00...180.00 Angle between polarizing and operating quan- tity I_OPER FLOAT32 0.00...40.00 Calculated oper- ating current FDEFLPDEF Enum 1=on Status 2=blocked...
  • Page 331 1MRS758755 C Protection functions Name Type Values (Range) Unit Description 2=blocked 3=test 4=test/blocked 5=off 4.2.2.13 Technical data Table 367: (F)DEFxPDEF Technical data Characteristic Value Depending on the frequency of the measured current: f ±2 Hz Operation accuracy (F)DEFLPDEF Current: ±1.5% of the set value or ±0.002 × I Voltage ±1.5% of the set value or ±0.002 ×...
  • Page 332 Protection functions 1MRS758755 C Characteristic Value ±5.0% of the theoretical value or ±40 ms Suppression of harmonics RMS: No suppression DFT: -50 dB at f = n × f , where n = 2, 3, 4, 5,… Peak-to-Peak: No suppression 4.2.2.14 Technical revision history Table 368: DEFHPDEF Technical revision history...
  • Page 333: Transient/Intermittent Earth-Fault Protection Intrptef

    1MRS758755 C Protection functions 4.2.3 Transient/intermittent earth-fault protection INTRPTEF 4.2.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Transient/intermittent earth-fault INTRPTEF Io> -> IEF 67NIEF protection 4.2.3.2 Function block Figure 158: Function block 4.2.3.3 Functionality The transient/intermittent earth-fault protection function INTRPTEF is a function designed for the protection and clearance of permanent and intermittent earth faults in distribution and sub-transmission networks.
  • Page 334 Protection functions 1MRS758755 C Timer 1 Fault OPERATE Transient indication detector START logic Timer 2 Level BLK_EF detector Blocking BLOCK logic Figure 159: Functional module diagram Level detector Uo signal Sel setting. The options The residual voltage can be selected from the are "Measured Uo"...
  • Page 335 1MRS758755 C Protection functions the parallel resistor of the coil, with security margin. For example, if the resistive current of the parallel resistor is 10 A, then a value of 0.7×10 A = 7 A could be used. The same setting is also applicable in case the coil is disconnected and the network becomes unearthed.
  • Page 336 Protection functions 1MRS758755 C Figure 160: Example of INTRPTEF operation in ”Transient EF” mode in the faulty feeder In the "Intermittent EF" mode the OPERATE output is activated when the following conditions are fulfilled: Peak counter limit • the number of transients that have been detected exceeds the setting Operate delay time •...
  • Page 337 1MRS758755 C Protection functions Figure 161: Example of INTRPTEF operation in ”Intermittent EF” mode in the faulty feeder, Peak counter limit=3 The timer calculates the start duration value START_DUR which indicates the percentage ratio of the start situation and the set operating time. The value is available in the monitored data view.
  • Page 338 Protection functions 1MRS758755 C output" mode, the function operates normally but the OPERATE output is not activated. 4.2.3.5 Application INTRPTEF is an earth-fault function dedicated to operate in intermittent and permanent earth faults occurring in distribution and sub-transmission networks. Fault detection is done from the residual current and residual voltage signals by monitoring the transients with predefined criteria.
  • Page 339 1MRS758755 C Protection functions the voltage of the faulty phase decreases and the corresponding capacitance is discharged to earth (→ discharge transients). At the same time, the voltages of the healthy phases increase and the related capacitances are charged (→ charge transient).
  • Page 340 Protection functions 1MRS758755 C INTRPTEF Group settings Table 372: INTRPTEF Group settings (Basic) Parameter Values (Range) Unit Step Default Description Directional mode 2=Forward Directional mode 1=Non-directional 2=Forward 3=Reverse Operate delay time 40...1200000 Operate delay time Voltage start value 0.05...0.50 0.01 0.20 Voltage start value Table 373: INTRPTEF Non group settings (Basic)
  • Page 341: Admittance-Based Earth-Fault Protection Efpadm

    1MRS758755 C Protection functions Name Type Values (Range) Unit Description 4=test/blocked 5=off 4.2.3.9 Technical data Table 376: INTRPTEF Technical data Characteristic Value Operation accuracy (Uo criteria with transi- Depending on the frequency of the measured ent protection) current: f ±2 Hz ±1.5% of the set value or ±0.002 ×...
  • Page 342 Protection functions 1MRS758755 C 4.2.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Admittance-based earth-fault pro- EFPADM Yo> -> 21YN tection 4.2.4.2 Function block Figure 164: Function block 4.2.4.3 Functionality The admittance-based earth-fault protection function EFPADM provides a selective earth-fault protection function for high-resistance earthed, unearthed and compensated networks.
  • Page 343 1MRS758755 C Protection functions 4.2.4.4 Operation principle Operation setting. The The function can be enabled and disabled with the corresponding parameter values are "On" and "Off". The operation of EFPADM can be described using a module diagram. All the modules in the diagram are explained in the next sections. Timer OPERATE Neutral...
  • Page 344 Protection functions 1MRS758755 C To ensure a sufficient accuracy for the Io and Uo measurements, it is required that Min operate voltage . If the admittance the residual voltage exceeds the value set by calculation mode is "Delta", the minimum change in the residual voltage due to a fault must be 0.01 ×...
  • Page 345 1MRS758755 C Protection functions Calculation mode "Delta" is recommended in case a high sensitivity of the protection is required, if the network has a high degree of asymmetry during the healthy state or if the residual current measurement is based on sum connection, that is, the Holmgren connection.
  • Page 346 Protection functions 1MRS758755 C A B C Protected feeder Background network Reverse Fault eTot Im(Yo) Re(Yo) Reverse fault: Yo ≈ -j*I Figure 166: Admittance calculation during a reverse fault Resistance of the parallel resistor Inductance of the compensation coil Resistance of the neutral earthing resistor Phase-to-earth admittance of the protected feeder Phase-to-earth admittance of the background network For example, in a 15 kV compensated network with the magnitude of the earth-fault...
  • Page 347 1MRS758755 C Protection functions In this case, the resistive part of the measured admittance is due to leakage losses of the protected feeder. As they are typically very small, the resistive part is close to zero. Due to inaccuracies in the voltage and current measurement, the small real part of the apparent neutral admittance may appear positive.
  • Page 348 Protection functions 1MRS758755 C Equation 16 shows that in case of a fault inside the protected feeder in unearthed networks, the measured admittance equals the admittance of the background network. The admittance is dominantly reactive; the small resistive part of the measured admittance is due to the leakage losses of the background network.
  • Page 349 1MRS758755 C Protection functions A B C Protected feeder Forward Fault eTot Background network eTot Forward fault, high resistance earthed network: Yo ≈ (I +j*(I ))/U eTot Im(Yo) Forward fault, unearthed network: Yo ≈ j*(I eTot Under-comp. (K<1) Re(Yo) Resonance (K=1) Reverse fault: Yo ≈...
  • Page 350 Protection functions 1MRS758755 C must therefore be based on the real part of the measured admittance, that is, conductance. Thus, the best selectivity is achieved when the compensated network is operated either in the undercompensated or overcompensated mode. For example, in a 15 kV compensated network, the magnitude of the earth-fault current of the protected feeder is 10 A (Rf = 0 Ω) and the magnitude of the network is 100 A (Rf = 0 Ω).
  • Page 351 1MRS758755 C Protection functions Table 378: Operation criteria Operation mode Description Admittance criterion Susceptance criterion Conductance criterion Yo, Go Admittance criterion combined with the con- ductance criterion Yo, Bo Admittance criterion combined with the sus- ceptance criterion Go, Bo Conductance criterion combined with the susceptance criterion Yo, Go, Bo Admittance criterion combined with the con-...
  • Page 352 Protection functions 1MRS758755 C Figure 168: Admittance characteristic with different operation modes when Directional mode = "Non-directional" REC615 & RER615 Technical Manual...
  • Page 353 1MRS758755 C Protection functions Figure 169: Admittance characteristic with different operation modes when Directional mode = "Forward" REC615 & RER615 Technical Manual...
  • Page 354 Protection functions 1MRS758755 C Figure 170: Admittance characteristic with different operation modes when Directional mode = "Reverse" REC615 & RER615 Technical Manual...
  • Page 355 1MRS758755 C Protection functions Timer Once activated, the timer activates the START output. The time characteristic is according to DT. When the operation timer has reached the value set with the Operate delay time setting, the OPERATE output is activated. If the fault disappears before the module operates, the reset timer is activated.
  • Page 356 Protection functions 1MRS758755 C Figure 171: Overadmittance characteristic. Left figure: classical origin-centered admittance circle. Right figure: admittance circle is set off from the origin. Non-directional overconductance characteristic Operation mode The non-directional overconductance criterion is enabled with the Directional mode to "Non-directional". The characteristic is setting set to "Go"...
  • Page 357 1MRS758755 C Protection functions Forward directional overconductance characteristic Operation The forward directional overconductance criterion is enabled with the mode setting set to "Go" and Directional mode set to "Forward". The characteristic Conductance forward is defined by one overconductance boundary line with the setting.
  • Page 358 Protection functions 1MRS758755 C Figure 174: Forward directional oversusceptance characteristic. Left figure: classical forward directional oversusceptance criterion. Middle figure: characteristic is tilted with negative tilt angle. Right figure: characteristic is tilted with positive tilt angle. Combined overadmittance and overconductance characteristic The combined overadmittance and overconductance criterion is enabled with the Operation mode setting set to "Yo, Go"...
  • Page 359 1MRS758755 C Protection functions Figure 175: Combined overadmittance and overconductance characteristic. Left figure: classical origin-centered admittance circle combined with two overconductance boundary lines. Right figure: admittance circle is set off from the origin. Combined overconductance and oversusceptance characteristic The combined overconductance and oversusceptance criterion is enabled with the Operation mode setting set to "Go, Bo".
  • Page 360 Protection functions 1MRS758755 C Figure 176: Combined forward directional overconductance and forward directional oversusceptance characteristic. Left figure: the Conductance tilt Ang and Susceptance tilt Ang settings equal zero degrees. Right figure: the setting Conductance tilt Ang > 0 degrees and the setting Susceptance tilt Ang < 0 degrees. Figure 177: Combined non-directional overconductance and non-directional oversusceptance characteristic The non-directional overconductance and non-directional...
  • Page 361 1MRS758755 C Protection functions 4.2.4.6 Application Admittance-based earth-fault protection provides a selective earth-fault protection for high-resistance earthed, unearthed and compensated networks. It can be applied for the protection of overhead lines as well as with underground cables. It can be used as an alternative solution to traditional residual current-based earth-fault protection functions, for example the IoCos mode in DEFxPDEF.
  • Page 362 Protection functions 1MRS758755 C Unearthed Resonance, K = 1 Over/Under-Compensated, K = 1.2/0.8 Rf = 500 ohm Rf = 2500 ohm Rf = 5000 ohm Rf = 10000 ohm 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Total earth f ault current (A), Rf = 0 ohm...
  • Page 363 1MRS758755 C Protection functions Voltage start value = 0.15 × Un Figure 179 According to , this selection ensures at least a sensitivity corresponding to a 2000 ohm fault resistance when the compensation degree varies between 80% and 120%. The greatest sensitivity is achieved when the compensation degree is close to full resonance.
  • Page 364 Protection functions 1MRS758755 C from origin to include some margin for the admittance operation point due to CT/VT-errors, when fault is located outside the feeder. Conductance forward : 15 A/(15 kV/sqrt(3)) * 0.2 = +0.35 mS corresponding to 3.0 A (at 15 kV). The selected value provides margin considering also the effect of CT/VT-errors in case of outside faults.
  • Page 365 1MRS758755 C Protection functions 4.2.4.7 Signals Table 379: EFPADM Input signals Name Type Default Description SIGNAL Residual current SIGNAL Residual voltage BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode RELEASE BOOLEAN 0=False External trigger to re- lease neutral admit- tance protection Table 380: EFPADM Output signals Name...
  • Page 366 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Conductance re- -500.00...500.00 0.01 -1.00 Conductance verse threshold in reverse direction Susceptance for- -500.00...500.00 0.01 1.00 Susceptance ward threshold in for- ward direction Susceptance re- -500.00...500.00 0.01 -1.00 Susceptance verse threshold in reverse direction...
  • Page 367: Harmonics-Based Earth-Fault Protection Haefptoc

    1MRS758755 C Protection functions EFPADM Monitored data Table 385: EFPADM Monitored data Name Type Values (Range) Unit Description START_DUR FLOAT32 0.00...100.00 Ratio of start time / operate time FAULT_DIR Enum Detected fault 0=unknown direction 1=forward 2=backward 3=both COND_RES FLOAT32 -1000.00...1000.0 Real part of cal- culated neutral admittance...
  • Page 368 Protection functions 1MRS758755 C 4.2.5.1 Identification Description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Harmonics-based earth-fault pro- HAEFPTOC Io>HA 51NHA tection 4.2.5.2 Function block HAEFPTOC OPERATE I_REF_RES START BLOCK Figure 182: Function block 4.2.5.3 Functionality The harmonics-based earth-fault protection function HAEFPTOC is used instead of a traditional earth-fault protection in networks where a fundamental frequency component of the earth-fault current is low due to compensation.
  • Page 369 1MRS758755 C Protection functions Figure 183: Functional module diagram Harmonics calculation This module feeds the measured residual current to the high-pass filter, where the frequency range is limited to start from two times the fundamental frequency of the network (for example, in a 50 Hz network the cutoff frequency is 100 Hz), that is, summing the harmonic components of the network from the second harmonic.
  • Page 370 Protection functions 1MRS758755 C Frequency Figure 184: High-pass filter Level detector Start value setting. If the value exceeds The harmonics current is compared to the Start value setting, Level detector sends an enabling signal to the the value of the Timer module.
  • Page 371 1MRS758755 C Protection functions Table 387: Values of the Enable reference use setting Enable reference use Functionality Standalone In the standalone mode, depending on the value Operating curve type setting, the time char- of the acteristics are according to DT or IDMT. When the operation timer has reached the value of the Oper- ate delay time setting in the DT mode or the value...
  • Page 372 Protection functions 1MRS758755 C Minimum operate time defines the minimum desired The setting parameter operation time for IDMT. The setting is applicable only when the IDMT curves are used Minimum operate time setting should be used with great care because the operation time is according to the IDMT curve but always at least the value of the Minimum operate time setting.
  • Page 373 1MRS758755 C Protection functions Analogue GOOSE receive Analogue GOOSE receive HAEFPTOC START Analogue OPERATE I_REF_RES GOOSE I_HARM_RES BLOCK send BLKD_I_REF Analogue GOOSE receive Figure 185: Protection scheme based on the analog GOOSE communication with three analog GOOSE receivers 4.2.5.6 Signals Table 388: HAEFPTOC Input signals Name Type...
  • Page 374 Protection functions 1MRS758755 C HAEFPTOC Group settings Table 390: HAEFPTOC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.05...5.00 0.01 0.10 Start value Time multiplier 0.05...15.00 0.01 1.00 Time multiplier in IEC/ANSI IDMT curves Operate delay time 100...200000 Operate delay time Operating curve...
  • Page 375 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Curve parameter C 0.02...2.00 2.00 Parameter C for customer program- mable curve Curve parameter D 0.46...30.00 29.10 Parameter D for customer program- mable curve Curve parameter E 0.0...1.0 Parameter E for customer program- mable curve Table 393: HAEFPTOC Non group settings (Advanced)
  • Page 376: Wattmetric-Based Earth-Fault Protection Wpwde

    Protection functions 1MRS758755 C Characteristic Value Reset ratio Typically 0.96 Operate time accuracy in definite time mode ±1.0% of the set value or ±20 ms Operate time accuracy in IDMT mode . ±5.0% of the set value or ±20 ms Suppression of harmonics -50 dB at f = f -3 dB at f = 13 ×...
  • Page 377 1MRS758755 C Protection functions 4.2.6.4 Operation principle Operation setting. The The function can be enabled and disabled with the corresponding parameter values are "On" and "Off". For WPWDE, certain notations and definitions are used. Residual voltage Uo = (UA+UB+UC)/3 = U , where U = zero-sequence voltage...
  • Page 378 Protection functions 1MRS758755 C Figure 188: Definition of the relay characteristic angle Characteristic angle setting The phase angle difference is calculated based on the (also known as Relay Characteristic Angle (RCA) or Relay Base Angle or Maximum Characteristic angle setting is done based on the method Torque Angle (MTA)).
  • Page 379 1MRS758755 C Protection functions -Uo (Polarizing quantity) Forward area Backward area RCA = -90˚ Maximum torque line Io (Operating quantity) Minimum operate current Forward area Backward area Figure 189: Definition of relay characteristic angle, RCA = -90° in an isolated network Characteristic angle should be set to a positive value if the operating signal lags the polarizing signal and to a negative value if the operating signal leads the polarizing signal.
  • Page 380 Protection functions 1MRS758755 C Maximum torque line forward direction (RCA = 0˚) -Uo (Polarizing quantity) Io (Operating quantity) Forward Forward area area Zero torque line Correction angle Correction angle Minimum operate current Backward Backward area area Figure 190: Definition of correction angle The polarity of the polarizing quantity can be changed (rotated by 180°) by setting Pol reversal to "True"...
  • Page 381 1MRS758755 C Protection functions current channel Configuration > Analog inputs > Current (Io, CT). If "Calculated Io" is selected, the nominal values for primary and secondary are obtained from the current transformer ratio entered for phase current channels Configuration > Analog inputs > Current (3I, CT). For residual voltage Uo, if "Measured Uo"...
  • Page 382 Protection functions 1MRS758755 C Residual Power start value of 1.0 × Pn corresponds then 1.0 × 20.000 kV × 100 A = 2000kW in primary Uo signal Sel setting, the nominal If "Calculated Uo" is selected for the value for residual voltage Un is always phase-to-phase voltage. Thus, the Voltage start value is 0.577 ×...
  • Page 383 1MRS758755 C Protection functions Figure 191: Operation time curves for wattmetric IDMT for S ref set at 0.15 xPn REC615 & RER615 Technical Manual...
  • Page 384 Protection functions 1MRS758755 C 4.2.6.6 Measurement modes The function operates on three alternative measurement modes: "RMS", "DFT" and Measurement mode "Peak-to-Peak". The measurement mode is selected with the setting. 4.2.6.7 Application The wattmetric method is one of the commonly used directional methods for detecting the earth faults especially in compensated networks.
  • Page 385 1MRS758755 C Protection functions ΣI ΣI ΣI ΣI Figure 193: Typical radial compensated network employed with wattmetric protection The wattmetric function is activated when the residual active power component exceeds the set limit. However, to ensure a selective operation, it is also required that the residual current and residual voltage also exceed the set limit.
  • Page 386 Protection functions 1MRS758755 C The use of wattmetric protection gives a possibility to use the dedicated inverse definite minimum time characteristics. This is applicable in large high-impedance earthed networks with a large capacitive earth-fault current. In a network employing a low-impedance earthed system, a medium-size neutral point resistor is used.
  • Page 387 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Time multiplier 0.05...2.00 0.01 1.00 Time multiplier for Wattmetric IDMT curves Operating curve 15=IEC Def. Time Selection of time 5=ANSI Def. Time type delay curve type 15=IEC Def. Time 20=Wattmetric IDMT Operate delay time...
  • Page 388 Protection functions 1MRS758755 C Name Type Values (Range) Unit Description 3=both START_DUR FLOAT32 0.00...100.00 Ratio of start time / operate time DIRECTION Enum Direction infor- 0=unknown mation 1=forward 2=backward 3=both ANGLE FLOAT32 -180.00...180.00 Angle between polarizing and operating quan- tity ANGLE_RCA FLOAT32 -180.00...180.00...
  • Page 389: Multifrequency Admittance-Based Earth-Fault Protection Mfadpsde

    1MRS758755 C Protection functions 4.2.7 Multifrequency admittance-based earth-fault protection MFADPSDE 4.2.7.1 Identification Description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Multifrequency admittance-based MFADPSDE Io> ->Y 67YN earth-fault protection 4.2.7.2 Function block Figure 194: Function block 4.2.7.3 Functionality The multifrequency admittance-based earth-fault protection function MFADPSDE provides selective directional earth-fault protection for high-impedance earthed networks, that is, for compensated, unearthed and high resistance earthed systems.
  • Page 390 Protection functions 1MRS758755 C 4.2.7.4 Operation principle Operation setting. The The function can be enabled and disabled with the corresponding parameter values are "On" and "Off". The operation of MFADPSDE can be described using a module diagram. All the modules in the diagram are explained in the following sections. Figure 195: Functional module diagram General fault criterion The General fault criterion ( GFC) module monitors the presence of earth fault in the...
  • Page 391 1MRS758755 C Protection functions Voltage start RELEASE input. In this case, the external release signal overrides the value setting and sets the internal limit to minimum value. Multi-frequency admittance calculation Multi-frequency admittance calculation module calculates neutral admittances utilizing fundamental frequency and the 2nd, 3rd, 5th, 7th and 9th harmonic components of residual current and zero-sequence voltage.
  • Page 392 Protection functions 1MRS758755 C For fault direction determination, the fundamental frequency admittance and harmonic susceptances are summed together in phasor format. The result is the sum admittance phasor defined as below.     ∑ + ⋅  = + ⋅...
  • Page 393 1MRS758755 C Protection functions t ( ) osum CPS osum osum osum osum (Equation 39) Figure 196: Principle of Cumulative Phasor Summing (CPS) The CPS technique provides a stable directional phasor quantity despite individual phasors varying in magnitude and phase angle in time due to a non-stable fault type such as restriking or intermittent earth fault.
  • Page 394 Protection functions 1MRS758755 C case harmonic components are present in the fault quantities, they would turn the phasor align to the negative axis. • Phasor 2 depicts the direction of accumulated sum admittance phasor in case of earth fault inside the protected feeder when the network is unearthed. The result is also valid in compensated networks when there are harmonic components present in the fault quantities (typically low ohmic permanent or intermittent or restriking fault).
  • Page 395 1MRS758755 C Protection functions The residual current is recommended to be measured with accurate core balance current transformer to minimize the measurement errors, especially phase displacement. This is especially important, when high sensitivity of protection is targeted. Tilt angle should reflect the measurement errors, that The characteristic is, the larger the measurement errors, the larger the Tilt angle setting...
  • Page 396 Protection functions 1MRS758755 C The real-part of stabilized fundamental frequency conductance estimate. o stab The imaginary part of stabilized fundamental frequency susceptance estimate. o stab + ⋅ ⋅ + ⋅ o stab ostab ostab baseres oCosstab oSinsta (Equation 41) The stabilized fundamental frequency residual current estimate, which is ob- tained (after conversion) from the corresponding admittance value by multiply- o stab ing it with the system nominal phase-to-earth voltage value.
  • Page 397 1MRS758755 C Protection functions Figure 198: Illustration of amplitude and resistive current sectors if Operating quantity is set “Adaptive” and Directional mode is set “Forward” The setting rules for current thresholds are given below. Min operate In case the “Adaptive” operating quantity is selected, the setting current should be set to value: <...
  • Page 398 Protection functions 1MRS758755 C For example, if the resistive current of the parallel resistor is 10 A (at primary voltage level), then a value of 0.5 · 10 A = 5 A could be used. The same setting is also applicable in case the coil is disconnected and the network becomes unearthed (as in this case this setting is compared to the amplitude of ).
  • Page 399 1MRS758755 C Protection functions PEAK_IND release Reset timer INTR_EF Reset delay time Reset delay time Figure 199: Example of operation of Transient detector: indication of detected transient by PEAK_IND output and detection of restriking or intermittent earth fault by INTR_EF output (setting Peak counter limit = 3) Operation logic MFADPSDE supports three operation modes selected with setting Operation mode: “General EF”, “Alarming EF”...
  • Page 400 Protection functions 1MRS758755 C three conditions is not valid. The start duration value START_DUR, available in the Monitored data view, indicates the percentage ratio of the start situation and the set operating time. In case detection of temporary earth faults is not desired, the activation Start delay time .
  • Page 401 1MRS758755 C Protection functions to detect earth faults regardless of their type (transient, intermittent or restriking, Voltage start value defines the basic permanent, high or low ohmic). The setting sensitivity of the MFADPSDE function. In “Alarming EF” mode, the operate timer is started during the following conditions.
  • Page 402 Protection functions 1MRS758755 C Figure 201: Operation in “Alarming EF” mode Operation mode “Intermittent EF” is dedicated for detecting restriking or intermittent earth faults. A required number of intermittent earth fault transients Peak counter limit setting must be detected for operation. Therefore, set with the transient faults or permanent faults with only initial fault ignition transient are not detected in “Intermittent EF”...
  • Page 403 1MRS758755 C Protection functions Peak When a required number of intermittent earth-fault transients set with the counter limit setting are detected without the function being reset (depends on Reset delay time setting), the START output is the drop-off time set with the activated.
  • Page 404 Protection functions 1MRS758755 C Figure 202: Operation in “Intermittent EF” mode, Peak counter limit = 3 Blocking logic There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting Configuration > System >...
  • Page 405 1MRS758755 C Protection functions Timer If the detected fault direction is opposite to the set directional mode and GFC Start delay time has elapsed. release is active, BLK_EF output is activated once Reset timer is activated at the falling edge of General Fault Criterion release, that Voltage start value .
  • Page 406 Protection functions 1MRS758755 C The operation of MFADPSDE is based on multi-frequency neutral admittance measurement utilizing cumulative phasor summing technique. This concept provides extremely secure, dependable and selective earth-fault protection also in cases where the residual quantities are highly distorted and contain non- fundamental frequency components.
  • Page 407 1MRS758755 C Protection functions Name Type Default Description BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode RELEASE BOOLEAN 0=False External trigger to re- lease neutral admit- tance protection RESET BOOLEAN 0=False External trigger to re- set direction calcula- tion Table 405: MFADPSDE Output signals Name...
  • Page 408 Protection functions 1MRS758755 C Table 408: MFADPSDE Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on Operation Off / On 1=on 5=off Operation mode 3=General EF Operation criteria 1=Intermittent EF 3=General EF 4=Alarming EF Table 409: MFADPSDE Non group settings (Advanced) Parameter Values (Range) Unit...
  • Page 409: Unbalance Protection

    1MRS758755 C Protection functions Name Type Values (Range) Unit Description operating quan- tity MFADPSDE Enum Status 1=on 2=blocked 3=test 4=test/blocked 5=off 4.2.7.9 Technical data Table 411: MFADPSDE Technical data Characteristic Value Operation accuracy Depending on the frequency of the measured voltage: ±2 Hz ±1.5% of the set value or ±0.002 ×...
  • Page 410 Protection functions 1MRS758755 C 4.3.1.2 Function block Figure 204: Function block 4.3.1.3 Functionality The negative-sequence overcurrent protection function NSPTOC is used for increasing sensitivity to detect single-phase and phase-to-phase faults or unbalanced loads due to, for example, broken conductors or unsymmetrical feeder voltages.
  • Page 411 1MRS758755 C Protection functions Start value is multiplied by the set module. If the ENA_MULT input is active, the set Start value Mult . Start value or Start value Mult The protection relay does not accept the Start value setting setting if the product of the settings exceeds the range.
  • Page 412 Protection functions 1MRS758755 C Blocking mode setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset.
  • Page 413 1MRS758755 C Protection functions 4.3.1.7 Settings NSPTOC Group settings Table 414: NSPTOC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.01...5.00 0.01 0.30 Start value Start value Mult 0.8...10.0 Multiplier for scal- ing the start value Time multiplier 0.05...15.00 0.01...
  • Page 414 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Curve parameter D 0.46...30.00 29.10 Parameter D for customer program- mable curve Curve parameter E 0.0...1.0 Parameter E for customer program- mable curve Table 417: NSPTOC Non group settings (Advanced) Parameter Values (Range) Unit...
  • Page 415: Phase Discontinuity Protection Pdnsptoc

    1MRS758755 C Protection functions Characteristic Value Operate time accuracy in inverse time mode ±5.0% of the theoretical value or ±20 ms Suppression of harmonics DFT: -50 dB at f = n × f , where n = 2, 3, 4, 5,… 4.3.1.10 Technical revision history Table 420: NSPTOC Technical revision history...
  • Page 416 Protection functions 1MRS758755 C 4.3.2.4 Operation principle Operation setting. The The function can be enabled and disabled with the corresponding parameter values are "On" and "Off". The operation of PDNSPTOC can be described by using a module diagram. All the modules in the diagram are explained in the next sections.
  • Page 417 1MRS758755 C Protection functions Blocking logic There are three operation modes in the blocking function. The operation modes are controlled by the BLOCK input and the global setting in Configuration > System > Blocking mode which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program.
  • Page 418 Protection functions 1MRS758755 C Figure 208: Three-phase current quantities during the broken conductor fault in phase A with the ratio of negative-sequence and positive-sequence currents 4.3.2.6 Signals Table 421: PDNSPTOC Input signals Name Type Default Description SIGNAL Positive sequence current SIGNAL Negative sequence current...
  • Page 419 1MRS758755 C Protection functions PDNSPTOC Group settings Table 423: PDNSPTOC Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 10...100 Start value Operate delay time 100...30000 Operate delay time Table 424: PDNSPTOC Non group settings (Basic) Parameter Values (Range) Unit Step...
  • Page 420: Voltage Protection

    Protection functions 1MRS758755 C Characteristic Value Retardation time <35 ms Operate time accuracy in definite time mode ±1.0% of the set value or ±20 ms Suppression of harmonics DFT: -50 dB at f = n × f , where n = 2, 3, 4, 5,… 4.3.2.10 Technical revision history Table 428: PDNSPTOC Technical revision history...
  • Page 421 1MRS758755 C Protection functions The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired. 4.4.1.4 Operation principle Operation setting. The The function can be enabled and disabled with the corresponding parameter values are "On" and "Off". The operation of PHPTOV can be described using a module diagram.
  • Page 422 Protection functions 1MRS758755 C Timer Once activated, the Timer activates the START output. Depending on the value of Operating curve type , the time characteristics are selected according to DT the set or IDMT. Chapter 11.3.1 For a detailed description of the voltage IDMT curves, see IDMT curves for overvoltage protection in this manual.
  • Page 423 1MRS758755 C Protection functions Figure 211: Behavior of different IDMT reset modes. Operate signal is based on settings Type of reset curve = “Def time reset” and Type of time reset= “Freeze Op timer”. The effect of other reset modes is also presented Time multiplier setting is used for scaling the IDMT operate times.
  • Page 424 Protection functions 1MRS758755 C Blocking logic There are three operation modes in the blocking function. The operation modes are controlled by the BLOCK input and the global setting in Configuration > System > Blocking mode which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program.
  • Page 425 1MRS758755 C Protection functions It is essential to provide power frequency overvoltage protection, in the form of time delayed element, either IDMT or DT to prevent equipment damage. 4.4.1.7 Signals Table 431: PHPTOV Input signals Name Type Default Description U_A_AB SIGNAL Phase to earth volt- age A or phase to...
  • Page 426 Protection functions 1MRS758755 C Table 434: PHPTOV Group settings (Advanced) Parameter Values (Range) Unit Step Default Description Type of reset curve 1=Immediate Selection of reset 1=Immediate curve type 2=Def time reset Type of time reset 1=Freeze Op timer Selection of time 1=Freeze Op timer reset 2=Decrease Op tim-...
  • Page 427 1MRS758755 C Protection functions PHPTOV Monitored data Table 437: PHPTOV Monitored data Name Type Values (Range) Unit Description START_DUR FLOAT32 0.00...100.00 Ratio of start time / operate time PHPTOV Enum Status 1=on 2=blocked 3=test 4=test/blocked 5=off 4.4.1.10 Technical data Table 438: PHPTOV Technical data Characteristic Value Operation accuracy...
  • Page 428: Three-Phase Undervoltage Protection Phptuv

    Protection functions 1MRS758755 C 4.4.2 Three-phase undervoltage protection PHPTUV 4.4.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Three-phase undervoltage protec- PHPTUV 3U< tion 4.4.2.2 Function block Figure 212: Function block 4.4.2.3 Functionality The three-phase undervoltage protection function PHPTUV is used to disconnect from the network devices, for example electric motors, which are damaged when subjected to service under low voltage conditions.
  • Page 429 1MRS758755 C Protection functions Level detector The fundamental frequency component of the measured three phase voltages are Start value . If the measured value is lower than compared phase-wise to the set Start value setting, the level detector enables the phase the set value of the Relative hysteresis setting can be used for preventing selection logic module.
  • Page 430 Protection functions 1MRS758755 C When the IDMT operate time curve is selected, the functionality of the Timer in the Type of reset curve , Type of time drop-off state depends on the combination of the reset and Reset delay time settings. Table 440: Reset time functionality when IDMT operation time curve selected Reset functionality Setting Type of...
  • Page 431 1MRS758755 C Protection functions Figure 214: Behavior of different IDMT reset modes. Operate signal is based on settings Type of reset curve = “Def time reset” and Type of time reset= “Freeze Op timer”. The effect of other reset modes is also presented Time multiplier setting is used for scaling the IDMT operate times.
  • Page 432 Protection functions 1MRS758755 C by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the BLOCK input signal activation is preselected with the global Blocking mode setting. Blocking mode setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated.
  • Page 433 1MRS758755 C Protection functions 4.4.2.7 Signals Table 442: PHPTUV Input signals Name Type Default Description U_A_AB SIGNAL Phase to earth volt- age A or phase to phase voltage AB U_B_BC SIGNAL Phase to earth volt- age B or phase to phase voltage BC U_C_CA SIGNAL...
  • Page 434 Protection functions 1MRS758755 C Table 446: PHPTUV Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on Operation Off / On 1=on 5=off Num of start pha- 1=1 out of 3 Number of phases 1=1 out of 3 required for oper- 2=2 out of 3 ate activation...
  • Page 435: Residual Overvoltage Protection Rovptov

    1MRS758755 C Protection functions Name Type Values (Range) Unit Description 2=blocked 3=test 4=test/blocked 5=off 4.4.2.10 Technical data Table 449: PHPTUV Technical data Characteristic Value Operation accuracy Depending on the frequency of the voltage measured: f ±2 Hz ±1.5% of the set value or ±0.002 × U Start Start time = 0.9 ×...
  • Page 436 Protection functions 1MRS758755 C 4.4.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Residual overvoltage protection ROVPTOV Uo> 4.4.3.2 Function block Figure 215: Function block 4.4.3.3 Functionality The residual overvoltage protection function ROVPTOV is used in distribution networks where the residual overvoltage can reach non-acceptable levels in, for example, high impedance earthing.
  • Page 437 1MRS758755 C Protection functions phase-voltage channels given in the global setting Configuration > Analog inputs > Voltage (3U,VT). Example 1: Uo is measured from the open-delta connected VTs (20/sqrt(3) kV : 100/ sqrt(3) V : 100/3 V). In this case, "Measured Uo" is selected. The nominal values for residual voltage is obtained from the VT ratios entered in Residual voltage Uo: Configuration >...
  • Page 438 Protection functions 1MRS758755 C In compensated and isolated neutral systems, the system neutral voltage, that is, the residual voltage, increases in case of any fault connected to earth. Depending on the type of the fault and the fault resistance, the residual voltage reaches different values.
  • Page 439 1MRS758755 C Protection functions Table 455: ROVPTOV Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Reset delay time 0...60000 Reset delay time 4.4.3.8 Monitored data ROVPTOV Monitored data Table 456: ROVPTOV Monitored data Name Type Values (Range) Unit Description START_DUR...
  • Page 440: Negative-Sequence Overvoltage Protection Nsptov

    Protection functions 1MRS758755 C 4.4.3.10 Technical revision history Table 458: ROVPTOV Technical revision history Technical revision Change Added a setting parameter for the "Measured Uo" or "Calculated Uo" selection Internal improvement Internal improvement 4.4.4 Negative-sequence overvoltage protection NSPTOV 4.4.4.1 Identification Function description IEC 61850 IEC 60617...
  • Page 441 1MRS758755 C Protection functions Figure 218: Functional module diagram Level detector Start value setting. The calculated negative-sequence voltage is compared to the set If the value exceeds the set Start value , the level detector enables the timer. Timer Once activated, the timer activates the START output. The time characteristic is Operate according to DT.
  • Page 442 Protection functions 1MRS758755 C The negative-sequence component current I , drawn by an asynchronous or a synchronous machine, is linearly proportional to the negative-sequence component voltage U . When U is P% of U is typically about 5 x P% x I The negative-sequence overcurrent NSPTOC blocks are used to accomplish a selective protection against the voltage and current unbalance for each machine separately.
  • Page 443 1MRS758755 C Protection functions Table 462: NSPTOV Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on Operation Off / On 1=on 5=off Table 463: NSPTOV Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Reset delay time 0...60000 Reset delay time...
  • Page 444: Positive-Sequence Undervoltage Protection Psptuv

    Protection functions 1MRS758755 C 4.4.4.10 Technical revision history Table 466: NSPTOV Technical revision history Technical revision Change Internal change Internal improvement. Internal improvement. 4.4.5 Positive-sequence undervoltage protection PSPTUV 4.4.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Positive-sequence undervoltage PSPTUV...
  • Page 445 1MRS758755 C Protection functions Figure 220: Functional module diagram. U1 is used for representing positive phase sequence voltage. Level detector The calculated positive-sequence voltage is compared to the set Start value setting. Start value , the level detector enables the timer. The If the value drops below the set Relative hysteresis setting can be used for preventing unnecessary oscillations if the Start value setting.
  • Page 446 Protection functions 1MRS758755 C reasons. The operation of the protection can cause an islanding condition, also called a loss-of-mains condition, in which a part of the network, that is, an island fed by the power station, is isolated from the rest of the network. There is then a risk of an autoreclosure taking place when the voltages of different parts of the network do not synchronize, which is a straining incident for the power station.
  • Page 447 1MRS758755 C Protection functions 4.4.5.7 Settings PSPTUV Group settings Table 469: PSPTUV Group settings (Basic) Parameter Values (Range) Unit Step Default Description Start value 0.010...1.200 0.001 0.500 Start value Operate delay time 40...120000 Operate delay time Table 470: PSPTUV Group settings (Advanced) Parameter Values (Range) Unit...
  • Page 448: Frequency Protection

    Protection functions 1MRS758755 C 4.4.5.9 Technical data Table 474: PSPTUV Technical data Characteristic Value Operation accuracy Depending on the frequency of the measured voltage: f ±2 Hz ±1.5% of the set value or ±0.002 × U Start time Minimum Typical Maximum Start = 0.99 ×...
  • Page 449 1MRS758755 C Protection functions 4.5.1.2 Function block Figure 221: Function block 4.5.1.3 Functionality The frequency protection function FRPFRQ is used to protect network components against abnormal frequency conditions. The function provides basic overfrequency, underfrequency and frequency rate-of- change protection. Additionally, it is possible to use combined criteria to achieve even more sophisticated protection schemes for the system.
  • Page 450 Protection functions 1MRS758755 C Start value In the “Freq>” mode, the measured frequency is compared to the set Freq> . If the measured value exceeds the set value of the Start value Freq> setting, the module reports the exceeding of the value to the operate logic module. Start value In the “Freq<”...
  • Page 451 1MRS758755 C Protection functions Operation mode Description df/dt The function operates independently as the frequency gra- dient ("df/dt"), rate-of-change, protection function. When Start the frequency gradient exceeds the set value of the value df/dt setting, the module activates the START outputs.
  • Page 452 Protection functions 1MRS758755 C Operation mode Description ate Tm df/dt is dominant regarding the output. OPERATE The time characteristic is according to DT. The characteristic that activates the output can be seen from the OPERATE output. If the frequency gradient OPR_UFRQ OPR_FRG restores before the module operates, the reset timer is acti-...
  • Page 453 1MRS758755 C Protection functions signal of the protection relay's program. The influence of the BLOCK signal activation Blocking mode . is preselected with the global setting Blocking mode setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated.
  • Page 454 Protection functions 1MRS758755 C 4.5.1.6 Signals Table 478: FRPFRQ Input signals Name Type Default Description SIGNAL Measured frequency dF/dt SIGNAL Rate of change of fre- quency BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode Table 479: FRPFRQ Output signals Name Type Description...
  • Page 455 1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description Operate Tm Freq 80...200000 Operate delay time for frequency Operate Tm df/dt 120...200000 Operate delay time for frequency rate of change Table 481: FRPFRQ Non group settings (Basic) Parameter Values (Range) Unit Step...
  • Page 456: Load-Shedding And Restoration Lshdpfrq

    Protection functions 1MRS758755 C Characteristic Value Reset time <150 ms Operate time accuracy ±1.0% of the set value or ±30 ms 4.5.1.10 Technical revision history Table 485: FRPFRQ Technical revision history Technical revision Change Step value changed from 0.001 to 0.0001 for Start value Freq>...
  • Page 457 1MRS758755 C Protection functions This time delay can be set and it is used to prevent unwanted load-shedding actions when the system frequency recovers to the normal level. Throughout this document, “high df/dt” is used to mean “a high rate of change of the frequency in negative direction.”...
  • Page 458 Protection functions 1MRS758755 C Underfrequency detection The underfrequency detection measures the input frequency calculated from the voltage signal. An underfrequency is detected when the measured frequency drops Start Value Freq setting. below the set value of the The underfrequency detection module includes a timer with the definite time (DT) characteristics.
  • Page 459 1MRS758755 C Protection functions Frequency Start value Freq set at 0.975 xFn [Hz] Start value df/dt set at -0.020 xFn/s 50 Hz Operate Tm df/dt = 500ms Operate Tm Freq = 1000ms Load shed mode = Freq< AND df/dt 49 Hz 48.75 Hz Time [s] ST_FRG...
  • Page 460 Protection functions 1MRS758755 C Frequency Start value Freq set at 0.975 xFn [Hz] Start value df/dt set at -0.020 xFn/s Operate Tm df/dt = 500ms 50 Hz Operate Tm Freq = 1000ms Load shed mode = Freq< AND df/dt 49 Hz Time [s] ST_FRG 500ms...
  • Page 461 1MRS758755 C Protection functions Restoring mode Description Restore start Val setting. The manual restoration cy has exceeded the includes a timer with the DT characteristics. When the timer has Restore delay time setting, the reached the set value of the RESTORE output is activated if the restoring condition still persists.
  • Page 462 Protection functions 1MRS758755 C underfrequency situation, the load-shedding trips out the unimportant loads to stabilize the network. Thus, loads are normally prioritized so that the less important loads are shed before the important loads. During the operation of some of the protective schemes or other system emergencies, the power system is divided into small islands.
  • Page 463 1MRS758755 C Protection functions Frequency [Hz] 50 Hz 48.8 Hz Time [s] START OPERATE ST_REST RESTORE Set Restore delay time Restore timer Timer Timer Timer starts suspended continues Figure 227: Operation of the load-shedding function Power system protection by load-shedding The decision on the amount of load that is required to be shed is taken through the measurement of frequency and the rate of change of frequency (df/dt).
  • Page 464 Protection functions 1MRS758755 C for the underfrequency can be set from a few seconds to a few fractions of a second stepwise from a higher frequency value to a lower frequency value. Table 486: Setting for a five-step underfrequency operation Load-shedding steps Start value Freq setting Operate Tm Freq setting...
  • Page 465 1MRS758755 C Protection functions 4.5.2.6 Signals Table 489: LSHDPFRQ Input signals Name Type Default Description SIGNAL Measured frequency dF/dt SIGNAL Rate of change of fre- quency BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode BLK_REST BOOLEAN 0=False Block restore MAN_RESTORE BOOLEAN...
  • Page 466 Protection functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Start value df/dt -0.200...-0.005 xFn /s 0.005 -0.010 Setting of frequen- cy gradient for df/dt detection Operate Tm Freq 80...200000 Time delay to op- erate for under fre- quency stage Operate Tm df/dt 120...200000 Time delay to oper-...
  • Page 467: Power Protection

    1MRS758755 C Protection functions Characteristic Value df/dt <120 ms Reset time <150 ms Operate time accuracy ±1.0% of the set value or ±30 ms Power protection 4.6.1 Three-phase power directional element DPSRDIR 4.6.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 468 Protection functions 1MRS758755 C Timer RELEASE Directional detector Low level blocking Blocking BLOCK logic Figure 229: Functional module diagram Directional detector The Directional detector module compares the angle of the positive-sequence current I1 to the angle of the positive-sequence voltage V1. Using the positive- sequence voltage angle as reference, the positive-sequence current angle is Characteristic angle setting.
  • Page 469 1MRS758755 C Protection functions Characteristic RCA=+45 deg Angle/ Max forward max torque line angle Min reverse Min forward Forward angle Backward angle area area Min operate voltage Max reverse angle Min operate current zero torque line Figure 230: Configurable directional settings Low-level blocking For a reliable operation, signal levels should be greater than the minimum level.
  • Page 470 Protection functions 1MRS758755 C 4.6.1.6 Signals Table 496: DPSRDIR Input signals Name Type Default Description REAL Positive sequence voltage REAL Positive sequence current BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode Table 497: DPSRDIR Output signals Name Type Description RELEASE...
  • Page 471: Multipurpose Protection Mapgapc

    1MRS758755 C Protection functions Parameter Values (Range) Unit Step Default Description 5=off Min operate current 0.01...1.00 0.01 0.10 Minimum operating current Min operate volt- 0.01...1.00 0.01 0.30 Minimum operating voltage Table 500: DPSRDIR Non group settings (Advanced) Parameter Values (Range) Unit Step Default...
  • Page 472: Operation Principle

    Protection functions 1MRS758755 C 4.7.3 Functionality The multipurpose protection function MAPGAPC is used as a general protection with many possible application areas as it has flexible measuring and setting facilities. The function can be used as an under- or overprotection with a settable absolute hysteresis limit.
  • Page 473: Application

    1MRS758755 C Protection functions Start value Add increased or decreased depending on the sign and value of the setting. Timer Once activated, the timer activates the START output. The time characteristic is Operate according to DT. When the operation timer has reached the value set by delay time , the OPERATE output is activated.
  • Page 474: Settings

    Protection functions 1MRS758755 C 4.7.6 Signals Table 503: MAPGAPC Input signals Name Type Default Description AI_VALUE FLOAT32 Analogue input value BLOCK BOOLEAN 0=False Block signal for acti- vating the blocking mode ENA_ADD BOOLEAN 0=False Enable start added Table 504: MAPGAPC Output signals Name Type Description...
  • Page 475: Technical Data

    1MRS758755 C Protection functions 4.7.8.1 MAPGAPC Monitored data Table 508: MAPGAPC Monitored data Name Type Values (Range) Unit Description START_DUR FLOAT32 0.00...100.00 Ratio of start time / operate time MAPGAPC Enum Status 1=on 2=blocked 3=test 4=test/blocked 5=off 4.7.9 Technical data Table 509: MAPGAPC Technical data Characteristic Value...
  • Page 476: Protection Related Functions

    Protection related functions 1MRS758755 C Protection related functions Three-phase inrush detector INRPHAR 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Three-phase inrush detector INRPHAR 3I2f> 5.1.2 Function block Figure 233: Function block 5.1.3 Functionality The three-phase inrush detector function INRPHAR is used to coordinate transformer inrush situations in distribution networks.
  • Page 477: Application

    1MRS758755 C Protection related functions Figure 234: Functional module diagram I_2H/I_1H This module calculates the ratio of the second harmonic (I_2H) and fundamental Start frequency (I_1H) phase currents. The calculated value is compared to the set value . If the calculated value exceeds the set Start value , the module output is activated.
  • Page 478: Signals

    Protection related functions 1MRS758755 C 5.1.5 Application Transformer protections require high stability to avoid tripping during magnetizing inrush conditions. A typical example of an inrush detector application is doubling the start value of an overcurrent protection during inrush detection. The inrush detection function can be used to selectively block overcurrent and earth-fault function stages when the ratio of second harmonic component over the fundamental component exceeds the set value.
  • Page 479: Settings

    1MRS758755 C Protection related functions 5.1.6.1 INRPHAR Input signals Table 510: INRPHAR Input signals Name Type Default Description I_2H_A SIGNAL Second harmonic phase A current I_1H_A SIGNAL Fundamental fre- quency phase A cur- rent I_2H_B SIGNAL Second harmonic phase B current I_1H_B SIGNAL Fundamental fre-...
  • Page 480: Monitored Data

    Protection related functions 1MRS758755 C Table 514: INRPHAR Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Reset delay time 0...60000 Reset delay time 5.1.8 Monitored data 5.1.8.1 INRPHAR Monitored data Table 515: INRPHAR Monitored data Name Type Values (Range) Unit Description...
  • Page 481: Identification

    1MRS758755 C Protection related functions Circuit breaker failure protection CCBRBRF 5.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Circuit breaker failure protection CCBRBRF 3I>/Io>BF 51BF/51NBF 5.2.2 Function block Figure 236: Function block 5.2.3 Functionality The circuit breaker failure protection function CCBRBRF is activated by trip commands from the protection functions.
  • Page 482 Protection related functions 1MRS758755 C Level detector Timer 1 POSCLOSE Start Retrip TRRET logic logic START Timer 2 Back-up Level detector trip TRBU logic Timer 3 CB_FAULT CB_FAULT_AL BLOCK Figure 237: Functional module diagram Level detector 1 Current value . If The measured phase currents are compared phasewise to the set Current value , the level detector reports the the measured value exceeds the set...
  • Page 483 1MRS758755 C Protection related functions CB failure trip mode is set to "1 out of 3", the resetting logic requires that Current value setting. the values of all the phase currents drop below the CB failure trip mode is set to "1 out of 4", the resetting logic requires that the values of the phase currents and the residual current drops below the Current value and Current value Res setting respectively.
  • Page 484 Protection related functions 1MRS758755 C this setting is made as low as possible at the same time as any unwanted operation is avoided. A typical setting is 90 - 150 ms, which is also dependent on the retrip timer. The minimum time delay for the CB failure delay can be estimated as: CBfailuredelay Retriptime t ≥...
  • Page 485 1MRS758755 C Protection related functions CB fail retrip mode setting is set to "Off". • The retrip logic is inactive if the CB fail retrip mode is set to the "Current check" mode, the activation of the • If CB failure mode setting. retrip output TRRET depends on the CB failure mode is set to the "Current"...
  • Page 486 Protection related functions 1MRS758755 C Trip pulse time setting or activated, it remains active for the time set with the Current value setting, until the values of all the phase currents drop below the whichever takes longer. CB failure trip mode is set to "1 out of 4", the failure detection is based Current value on either a phase current or a residual current exceeding the Current value Res setting respectively.
  • Page 487: Application

    1MRS758755 C Protection related functions Figure 241: Backup trip logic 5.2.5 Application The n-1 criterion is often used in the design of a fault clearance system. This means that the fault is cleared even if some component in the fault clearance system is faulty.
  • Page 488: Signals

    Protection related functions 1MRS758755 C CCBRBRF can be blocked by using an internally assigned signal or an external signal from a binary input. This signal blocks the function of the breaker failure protection even when the timers have started or the timers are reset. The retrip timer is initiated after the start input is set to true.
  • Page 489: Settings

    1MRS758755 C Protection related functions 5.2.6.1 Table 518: CCBRBRF Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current SIGNAL Residual current BLOCK BOOLEAN 0=False Block CBFP operation START BOOLEAN 0=False CBFP start command POSCLOSE BOOLEAN 0=False...
  • Page 490: Monitored Data

    Protection related functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 2=Without Check 3=Current check Retrip time 0...60000 Delay timer for ret- CB failure delay 0...60000 Delay timer for backup trip Table 521: CCBRBRF Non group settings (Advanced) Parameter Values (Range) Unit Step...
  • Page 491: Master Trip Trpptrc

    1MRS758755 C Protection related functions 5.2.10 Technical revision history Table 524: CCBRBRF Technical revision history Technical revision Change Default trip pulse time changed to 150 ms Start latching Added new setting parameter mode . Maximum value changed to 2.00 xIn for the Current value setting.
  • Page 492 Protection related functions 1MRS758755 C When the TRPPTRC function is disabled, all trip outputs intended to go through the function to the circuit breaker trip coil are blocked. The operation of TRPPTRC can be described with a module diagram. All the modules in the diagram are explained in the next sections.
  • Page 493: Application

    1MRS758755 C Protection related functions 5.3.5 Application All trip signals from different protection functions are routed through the trip logic. The most simplified application of the logic function is linking the trip signal and ensuring that the signal is long enough. The tripping logic in the protection relay is intended to be used in the three-phase tripping for all fault types (3ph operating).
  • Page 494: Signals

    Protection related functions 1MRS758755 C SPCGGIO1_SW_MODE_ENA FPHLPDOC1_OPERATE PHHPTOC1_OPERATE PHIPTOC1_OPERATE FDPHLPDOC1_OPERATE FDPHLPDOC2_OPERATE DPHHPDOC1_OPERATE FEFLPTOC1_OPERATE EFHPTOC1_OPERATE EFIPTOC1_OPERATE TRPPTRC1 FDEFLPDEF1_OPERATE FDEFLPDEF2_OPERATE BLOCK DEFHPDEF1_OPERATE TRIP EFPADM1_OPERATE OPERATE CL_LKOUT EFPADM2_OPERATE X100 PO1 RST_LKOUT EFPADM3_OPERATE WPWDE1_OPERATE WPWDE2_OPERATE WPWDE3_OPERATE NSPTOC1_OPERATE NSPTOC2_OPERATE PDNSPTOC1_OPERATE ROVPTOV1_OPERATE ROVPTOV2_OPERATE PHPTOV1_OPERATE PHPTOV2_OPERATE PHPTOV3_OPERATE PHPTUV1_OPERATE PHPTUV2_OPERATE PHPTUV3_OPERATE...
  • Page 495: Settings

    1MRS758755 C Protection related functions 5.3.6.2 TRPPTRC Output signals Table 527: TRPPTRC Output signals Name Type Description TRIP BOOLEAN General trip output signal CL_LKOUT BOOLEAN Circuit breaker lockout out- put (set until reset) 5.3.7 Settings 5.3.7.1 TRPPTRC Non group settings (Basic) Table 528: TRPPTRC Non group settings (Basic) Parameter Values (Range)
  • Page 496: Fault Locator Scefrflo

    Protection related functions 1MRS758755 C 5.3.9 Technical revision history Table 530: TRPPTRC Technical revision history Technical revision Change Internal improvement. Trip output mode default setting is Setting changed to "Latched". Internal improvement. Fault locator SCEFRFLO 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification...
  • Page 497: Operation Principle

    1MRS758755 C Protection related functions The fault distance calculation is based on locally measured fundamental frequency current and voltage phasors. The full operation of SCEFRFLO requires that all phase currents and phase-to-earth voltages are measured. The fault distance estimate is obtained when the function is externally or internally triggered.
  • Page 498 Protection related functions 1MRS758755 C Nominal phase-to-phase voltage Maximum three-phase load Z Max phase load = 320.0 Ω. For example, if U = 20 kV and S = 1 MVA, then The identification of the faulty phases is compulsory for the correct operation of SCEFRFLO.
  • Page 499 1MRS758755 C Protection related functions Impedance valule Description Flt loop resistance The total fault loop resistance from the substation to the fault loca- tion in primary ohms. Fault point resistance is included in this value. The composition of this term is different for short-circuit and earth- fault loops as described in the following subsections.
  • Page 500 Protection related functions 1MRS758755 C The recorded data Flt phase reactance provides the estimated positive-sequence reactance from the substation to the fault location. Figure 249: Fault loop impedance for phase-to-earth fault loops “AG Fault”, “BG Fault” or “CG Fault” EF algorithm The earth-fault distance calculation algorithm is selected with setting Sel .
  • Page 501 1MRS758755 C Protection related functions Figure 250: Description of the equivalent load distance Equivalent load Dis can be calculated based on the load flow and The exact value for voltage drop calculations using data from DMS-system and the following equation. d real Equivalent load Dis d tap d...
  • Page 502 Protection related functions 1MRS758755 C of the main line. As a result, the calculated value is stored in the recorded data Equivalent load Dis. EF algorithm Sel is equal to “Load modelling”, the EF In addition, when the setting algorithm Cur Sel setting determines whether zero-sequence “Io based” or negative- sequence “I2 based”...
  • Page 503 1MRS758755 C Protection related functions Flt loop reactance Flt phase reactance (Equation 54) Figure 251: Fault loop impedance for phase-to-phase fault loops (either “AB Fault”, “BC Fault” or “CA Fault”) The fault distance calculation algorithm for the phase-to-phase fault loops is Load Com PP loops and Enable simple model .
  • Page 504 Protection related functions 1MRS758755 C Figure 252: Fault loop impedance for a three-phase fault loop (“ABC Fault”) The three-phase fault distance is calculated with a special measuring element using positive-sequence quantities. This is advantageous especially in case of non- transposed (asymmetric) lines, as the influence of line parameter asymmetry is reduced.
  • Page 505 1MRS758755 C Protection related functions Figure 253: Definition of a physical fault point resistance in different fault loops Steady-state asymmetry and load compensation In reality, power systems are never perfectly symmetrical. The asymmetry produces steady-state quantities in the form of zero-sequence and negative-sequence voltages and currents.
  • Page 506 Protection related functions 1MRS758755 C negatively to fault distance estimation are detected, the Flt Dist quality is according Table 533 . In this case estimated fault distance, Flt distance value is given in HMI in parenthesis. Table 533: Fault distance quality indicator Flt Dist quality Value Corresponding inaccuracy description Estimation stability criterion has not been...
  • Page 507 1MRS758755 C Protection related functions faults. As data sheet impedance per unit values are generally valid only for a certain tower configuration, the values should be adjusted according to the actual installation configuration. This minimizes the fault location errors caused by inaccurate settings.
  • Page 508 Protection related functions 1MRS758755 C Table 535: Positive-sequence impedance values for typical 10/20 kV conductors, “Flat” tower configuration assumed Name R1 [Ω/km] X1 [Ω/km] Al/Fe 36/6 Sparrow 0.915 0.383 Al/Fe 54/9 Raven 0.578 0.368 Al/Fe 85/14 Pigeon 0.364 0.354 Al/Fe 93/39 Imatra 0.335 0.344 Al/Fe 108/23 Vaasa...
  • Page 509 1MRS758755 C Protection related functions conductor AC resistance [Ω/km] ρ earth the equivalent depth [m] of the earth return path ρ earth resistivity [Ωm] earth ⋅ ⋅ ⋅ the equivalent radius [m] for conductor bundle radius [m] for single conductor distance [m] between phases x and y Ph leakage Ris and Ph capacitive React settings Ph leakage Ris and Ph capacitive React settings are used for improving fault...
  • Page 510 Protection related functions 1MRS758755 C In case of unearthed network, if the earth-fault current produced by the protected feeder I is known, the setting value can be calculated. ⋅ 3 Ph capacitive React (Equation 64) Phase-to-earth voltage Ph capacitive React setting by SCEFRFLO can also determine the value for the Ph capacitive React is triggered by the binary measurements.
  • Page 511 1MRS758755 C Protection related functions Line Len section B or Line Len section C in the order section A-> section B-> section Line Len section A to Impedance model with one line section is enabled by setting R1 line section A , X1 line section differ from zero.
  • Page 512 Protection related functions 1MRS758755 C Figure 257 the feeder is modelled either with one or three line sections with Table 537 parameters given in Table 537: Impedance settings Parameter Impedance model with one Impedance model with three section sections R1 line section A 0.660 Ω/pu 0.236 Ω/pu X1 line section A...
  • Page 513 1MRS758755 C Protection related functions 5.4.4.3 Trigger detection The fault distance estimate is obtained when SCEFRFLO is triggered. The triggering Calculation Trg mode . The options for selection method is defined with setting are: “External” or “Internal”, where the default value is “External”. The TRIGG_OUT event indicates fault distance value recording moment.
  • Page 514 Protection related functions 1MRS758755 C Figure 259: The behavior of fault distance estimate in time 5.4.4.4 Alarm indication SCEFRFLO contains an alarm output for the calculated fault distance. If the Low alarm Dis limit calculated fault distance FLT_DISTANCE is between the settings High alarm Dis limit , the ALARM output is activated.
  • Page 515: Application

    1MRS758755 C Protection related functions 5.4.4.5 Recorded data All the information required for a later fault analysis is recorded to SCEFRFLO recorded data. In the protection relay, recorded data is found in Monitoring > Recorded data > Other protection > SCEFRFLO. The function has also monitored data values which are used for the read-out of Table 538 continuous calculation values.
  • Page 516: Signals

    Protection related functions 1MRS758755 C SCEFRFLO can also be applied for earth-fault location in unearthed distribution networks. Configuration example A typical configuration example for SCEFRFLO triggering is illustrated in Figure Calculation Trg mode is set to where external triggering is applied, that is, “External”.
  • Page 517: Settings

    1MRS758755 C Protection related functions Name Type Default Description U_B_BC SIGNAL Phase to earth volt- age B or phase to phase voltage BC U_C_CA SIGNAL Phase to earth volt- age C or phase to phase voltage CA SIGNAL Residual voltage SIGNAL Positive phase se- quence voltage...
  • Page 518 Protection related functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description R0 line section A 0.000...1000.000 ohm / pu 0.001 4.000 Zero sequence line resistance, line sec- tion A X0 line section A 0.000...1000.000 ohm / pu 0.001 4.000 Zero sequence line reactance, line sec- tion A...
  • Page 519: Monitored Data

    1MRS758755 C Protection related functions Table 544: SCEFRFLO Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description EF algorithm Sel 1=Load compensa- Selection for PhE- 1=Load compensa- tion loop calculation al- tion gorithm 2=Load modelling EF algorithm Cur 1=Io based Selection for earth- 1=Io based...
  • Page 520 Protection related functions 1MRS758755 C Name Type Values (Range) Unit Description XFLOOP FLOAT32 0.0...1000000.0 Fault loop reac- tance in primary ohms XFPHASE FLOAT32 0.0...1000000.0 Positive se- quence fault re- actance in pri- mary ohms IFLT_PER_ILD FLOAT32 0.00...60000.00 Fault to load cur- rent ratio S_CALC FLOAT32...
  • Page 521 1MRS758755 C Protection related functions Name Type Values (Range) Unit Description Flt to Lod Cur ra- FLOAT32 0.00...60000.00 Fault to load cur- rent ratio Equivalent load FLOAT32 0.00...1.00 Estimated equiv- alent load dis- tance XC0F Calc FLOAT32 0.0...1000000.0 Estimated PhE capacitive reac- tance of the line Pre fault time...
  • Page 522: Technical Data

    Protection related functions 1MRS758755 C Name Type Values (Range) Unit Description A Flt Phs B Magn FLOAT32 0.00...40.00 Fault current phase B, magni- tude A Flt Phs B angle FLOAT32 -180.00...180.00 Fault current phase B, angle A Flt Phs C Magn FLOAT32 0.00...40.00 Fault current phase C, magni-...
  • Page 523 1MRS758755 C Protection related functions 5.4.10 Technical revision history Table 547: SCEFRFLO Technical revision history Technical revision Change Internal improvement. REC615 & RER615 Technical Manual...
  • Page 524: Supervision Functions

    Supervision functions 1MRS758755 C Supervision functions Trip circuit supervision TCSSCBR 6.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Trip circuit supervision TCSSCBR 6.1.2 Function block Figure 261: Function block 6.1.3 Functionality The trip circuit supervision function TCSSCBR is designed to supervise the control circuit of the circuit breaker.
  • Page 525: Application

    1MRS758755 C Supervision functions Figure 262: Functional module diagram TCS status This module receives the trip circuit status from the hardware. A detected failure in the trip circuit activates the timer. Timer Once activated, the timer runs until the set value of Operate delay time has elapsed.
  • Page 526 Supervision functions 1MRS758755 C Figure 263: Operating principle of the trip-circuit supervision with an external resistor. The TCSSCBR blocking switch is not required since the external resistor is used. If TCS is required only in a closed position, the external shunt resistance can be omitted.
  • Page 527 1MRS758755 C Supervision functions Figure 264: Operating principle of the trip-circuit supervision without an external resistor. The circuit breaker open indication is set to block TCSSCBR when the circuit breaker is open. Trip circuit supervision and other trip contacts It is typical that the trip circuit contains more than one trip contact in parallel, for example in transformer feeders where the trip of a Buchholz relay is connected in parallel with the feeder terminal and other relays involved.
  • Page 528 Supervision functions 1MRS758755 C Figure 265: Constant test current flow in parallel trip contacts and trip circuit supervision In case of parallel trip contacts, the recommended way to do the wiring is that the TCS test current flows through all wires and joints. REC615 &...
  • Page 529 1MRS758755 C Supervision functions Figure 266: Improved connection for parallel trip contacts where the test current flows through all wires and joints Several trip circuit supervision functions parallel in circuit Not only the trip circuit often have parallel trip contacts, it is also possible that the circuit has multiple TCS circuits in parallel.
  • Page 530 Supervision functions 1MRS758755 C An auxiliary relay can be used between the protection relay trip contact and the circuit breaker coil. This way the breaking capacity question is solved, but the TCS circuit in the protection relay monitors the healthy auxiliary relay coil, not the circuit breaker coil.
  • Page 531 1MRS758755 C Supervision functions Using power output contacts without trip circuit supervision If TCS is not used but the contact information of corresponding power outputs are required, the internal resistor can be by-passed. The output can then be utilized as a normal power output.
  • Page 532 Supervision functions 1MRS758755 C Figure 268: Incorrect connection of trip-circuit supervision A connection of three protection relays with a double pole trip circuit is shown in the following figure. Only the protection relay R3 has an internal TCS circuit. In order to test the operation of the protection relay R2, but not to trip the circuit breaker, the upper trip contact of the protection relay R2 is disconnected, as shown in the figure, while the lower contact is still connected.
  • Page 533: Signals

    1MRS758755 C Supervision functions Figure 269: Incorrect testing of protection relays 6.1.6 Signals 6.1.6.1 TCSSCBR Input signals Table 549: TCSSCBR Input signals Name Type Default Description BLOCK BOOLEAN 0=False Block input status 6.1.6.2 TCSSCBR Output signals Table 550: TCSSCBR Output signals Name Type Description...
  • Page 534: Settings

    Supervision functions 1MRS758755 C 6.1.7 Settings 6.1.7.1 TCSSCBR Non group settings Table 551: TCSSCBR Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on Operation Off / On 1=on 5=off Operate delay time 20...300000 3000 Operate delay time Table 552: TCSSCBR Non group settings (Advanced) Parameter Values (Range)
  • Page 535: Function Block

    1MRS758755 C Supervision functions 6.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Fuse failure supervision SEQSPVC FUSEF 6.2.2 Function block Figure 270: Function block 6.2.3 Functionality The fuse failure supervision function SEQSPVC is used to block the voltage- measuring functions when failure occurs in the secondary circuits between the voltage transformer (or combi sensor or voltage sensor) and protection relay to avoid misoperations of the voltage protection functions.
  • Page 536 Supervision functions 1MRS758755 C Figure 271: Functional module diagram Negative phase-sequence criterion A fuse failure based on the negative-sequence criterion is detected if the measured Neg Seq voltage Lev value and the negative-sequence voltage exceeds the set Neg Seq current Lev value. measured negative-sequence current is below the set The detected fuse failure is reported to the decision logic module.
  • Page 537 1MRS758755 C Supervision functions There are two conditions for activating the current and voltage delta function. Voltage change • The magnitude of dU/dt exceeds the corresponding value of the rate setting and magnitude of dI/dt is below the value of the Current change rate setting in any phase at the same time due to the closure of the circuit breaker ( CB_CLOSED = TRUE).
  • Page 538: Application

    Supervision functions 1MRS758755 C Fuse failure detection criterion Conditions and function response Neg Seq voltage Lev for voltage is above more than 5 seconds, all the phase currents Current dead Lin Val setting are below the and the circuit breaker is closed, that is, is TRUE.
  • Page 539: Signals

    1MRS758755 C Supervision functions failure detection is one of the means to block voltage-based functions before they operate. Three phase network Fault in a measuring circuit between voltage transformer and protection relay e.g. blown fuse REF 615 Figure 272: Fault in a circuit from the voltage transformer to the protection relay A fuse failure occurs due to blown fuses, broken wires or intended substation operations.
  • Page 540: Settings

    Supervision functions 1MRS758755 C Name Type Default Description U_C_CA SIGNAL Phase C voltage SIGNAL Negative phase se- quence voltage BLOCK BOOLEAN 0=False Block of function CB_CLOSED BOOLEAN 0=False Active when circuit breaker is closed DISCON_OPEN BOOLEAN 0=False Active when line dis- connector is open MINCB_OPEN BOOLEAN...
  • Page 541: Monitored Data

    1MRS758755 C Supervision functions Parameter Values (Range) Unit Step Default Description Min Op voltage del- 0.01...1.00 0.01 0.50 Minimum operate level of phase volt- age for delta calcu- lation Min Op current del- 0.01...1.00 0.01 0.10 Minimum operate level of phase cur- rent for delta calcu- lation Seal in voltage...
  • Page 542: Runtime Counter For Machines And Devices Mdsopt

    Supervision functions 1MRS758755 C Runtime counter for machines and devices MDSOPT 6.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Runtime counter for machines and MDSOPT OPTS OPTM devices 6.3.2 Function block Figure 273: Function block 6.3.3 Functionality The runtime counter for machines and devices function MDSOPT calculates and...
  • Page 543: Application

    1MRS758755 C Supervision functions Operation time counter This module counts the operation time. When POS_ACTIVE is active, the count is continuously added to the time duration until it is deactivated. At any time the OPR_TIME output is the total duration for which POS_ACTIVE is active. The unit of time duration count for OPR_TIME is hour.
  • Page 544: Settings

    Supervision functions 1MRS758755 C 6.3.6 Signals 6.3.6.1 MDSOPT Input signals Table 562: MDSOPT Input signals Name Type Default Description BLOCK BOOLEAN 0=False Block input status POS_ACTIVE BOOLEAN 0=False When active indicates the equipment is run- ning RESET BOOLEAN 0=False Resets the accumula- ted operation time to initial value 6.3.6.2...
  • Page 545: Monitored Data

    1MRS758755 C Supervision functions Table 565: MDSOPT Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Initial value 0...299999 Initial value for op- eration time super- vision Operating time 0...23 Time of day when hour alarm and warning will occur Operating time 1=Immediate...
  • Page 546: Voltage Presence Phsvpr

    Supervision functions 1MRS758755 C Voltage presence PHSVPR 6.4.1 Identification Description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Voltage presence PHSVPR PHSVPR PHSVPR 6.4.2 Function block Figure 275: Function block 6.4.3 Functionality The voltage presence function PHSVPR supervises the voltage presence status. The function can be used for indicating voltage presence status of a load break switch or a circuit breaker.
  • Page 547 1MRS758755 C Supervision functions Figure 276: Functional module diagram Voltage detector This module supervises voltage presence status value of a load switch or a circuit Voltage selection setting is used for selecting the phase-to-earth or breaker. The Phase supervision setting phase-to-phase voltages for voltage detection, and the defines which phase or phases are monitored.
  • Page 548: Application

    Supervision functions 1MRS758755 C Phase selection logic Num of phases matches the General output U_LIVE is activated when setting number of phases where voltage is set above high level setting. U_LIVE output is deactivated immediately after voltage live condition is no longer met. Num of phases matches the General output U_DEAD is activated when setting number of phases where voltage is below the set low level setting.
  • Page 549: Settings

    1MRS758755 C Supervision functions 6.4.6 Signals Table 569: PHSVPR Input signals Name Type Default Description U_A_AB SIGNAL Phase-to-earth voltage A or phase-to- phase voltage AB U_B_BC SIGNAL Phase-to-earth voltage B or phase-to- phase voltage BC U_C_CA SIGNAL Phase-to-earth voltage C or phase-to- phase voltage CA BLOCK BOOLEAN...
  • Page 550: Monitored Data

    Supervision functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 2=phase-to-phase phase-to- phase voltages Phase supervi- 1=A or AB 4=C or CA Monitored volt- sion age phase 2=B or BC 3=A&B or AB&BC 4=C or CA 5=A&C or AB&CA 6=B&C or BC&CA 7=A&B&C or AB&BC&CA...
  • Page 551 1MRS758755 C Supervision functions 6.4.9 Technical data Table 574: PHSVPR Technical data Characteristic Value Operation accuracy Depending on the frequency of the measured voltage: f ±2 ±1.5% of the set value or ±0.002 × U Operation time accuracy ±1.0% of the set value or ±20 ms REC615 &...
  • Page 552: Condition Monitoring Functions

    Condition monitoring functions 1MRS758755 C Condition monitoring functions Circuit breaker condition monitoring SSCBR 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Circuit-breaker condition moni- SSCBR CBCM CBCM toring 7.1.2 Function block 7.1.3 Functionality The circuit-breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker.
  • Page 553 1MRS758755 C Condition monitoring functions Figure 278: Functional module diagram 7.1.4.1 Circuit breaker status The Circuit breaker status sub-function monitors the position of the circuit breaker, that is, whether the breaker is in open, closed or invalid position. The operation of the breaker status monitoring can be described by using a module diagram.
  • Page 554 Condition monitoring functions 1MRS758755 C Phase current check Acc stop current . If This module compares the three phase currents to the setting the current in a phase exceeds the set level, information about the phase is reported to the contact position indicator module. Contact position indicator The OPENPOS output is activated when the auxiliary input contact POSCLOSE is FALSE, the POSOPEN input is TRUE and all the phase currents are below the setting...
  • Page 555 1MRS758755 C Condition monitoring functions 7.1.4.3 Breaker contact travel time The Breaker contact travel time module calculates the breaker contact travel time for the closing and opening operation. The operation of the breaker contact travel time measurement can be described with a module diagram. All the modules in the diagram are explained in the next sections.
  • Page 556 Condition monitoring functions 1MRS758755 C or closing command and the auxiliary contacts’ state change. The opening travel time is measured between the rising edge of the OPEN_CB_EXE command and the POSOPEN auxiliary contact. The closing travel time is measured between the rising edge of the CLOSE_CB_EXEC command and the POSCLOSE auxiliary contact.
  • Page 557 1MRS758755 C Condition monitoring functions The operation of the subfunction can be described with a module diagram. All the modules in the diagram are explained in the next sections. Figure 284: Functional module diagram for counting circuit breaker operations Operation counter The operation counter counts the number of operations based on the state change of the binary auxiliary contacts inputs POSCLOSE and POSOPEN.
  • Page 558 Condition monitoring functions 1MRS758755 C The calculation is initiated with the POSCLOSE input opening events. It ends when Acc stop current setting value. the RMS current becomes lower than the Figure 286: Significance of the Difference Cor time setting Difference Cor time setting is used instead of the auxiliary contact to accumulate the energy from the time the main contact opens.
  • Page 559 1MRS758755 C Condition monitoring functions Figure 287: Functional module diagram for estimating the life of the circuit breaker Circuit breaker life estimator The circuit breaker life estimator module calculates the remaining life of the circuit breaker. If the tripping current is less than the rated operating current set with Rated Op current setting, the remaining operation of the breaker reduces by one operation.
  • Page 560 Condition monitoring functions 1MRS758755 C Figure 288: Functional module diagram for circuit breaker spring-charged indication and alarm Spring charge time measurement Two binary inputs, SPR_CHR_ST and SPR_CHR, indicate spring charging started and spring charged, respectively. The spring-charging time is calculated from the difference of these two signal timings.
  • Page 561: Application

    1MRS758755 C Condition monitoring functions Timer 2 If the pressure drops further to a very low level, the PRES_LO_IN binary input becomes high, activating the lockout alarm PRES_LO after a time delay set with Pres lockout time setting. The PRES_LO alarm can be blocked by activating the BLOCK input.
  • Page 562 Condition monitoring functions 1MRS758755 C Remaining life of the breaker Every time the breaker operates, the life of the circuit breaker reduces due to wearing. The wearing in the breaker depends on the tripping current, and the remaining life of the breaker is estimated from the circuit breaker trip curve provided by the manufacturer.
  • Page 563: Signals

    1MRS758755 C Condition monitoring functions Calculation for estimating the remaining life Figure 290 shows that there are 30,000 possible operations at the rated operating current of 630 A and 20 operations at the rated fault current 16 kA. Therefore, if the tripping current is 10 kA, one operation at 10 kA is equivalent to 30,000/60=500 operations at the rated current.
  • Page 564 Condition monitoring functions 1MRS758755 C Name Type Default Description CLOSE_CB_EXE BOOLEAN 0=False Signal for close com- mand to coil PRES_ALM_IN BOOLEAN 0=False Binary pressure alarm input PRES_LO_IN BOOLEAN 0=False Binary pressure input for lockout indication SPR_CHR_ST BOOLEAN 0=False CB spring charging started input SPR_CHR BOOLEAN...
  • Page 565: Settings

    1MRS758755 C Condition monitoring functions Name Type Description MON_ALM BOOLEAN CB 'not operated for long time' alarm PRES_ALM BOOLEAN Pressure below alarm level PRES_LO BOOLEAN Pressure below lockout level OPENPOS BOOLEAN CB is in open position INVALIDPOS BOOLEAN CB is in invalid position (not positively open or closed) CLOSEPOS BOOLEAN...
  • Page 566: Monitored Data

    Condition monitoring functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Rated Op current 100.00...5000.00 0.01 1000.00 Rated operating current of the breaker Rated fault current 500.00...75000.00 0.01 5000.00 Rated fault current of the breaker Op number rated 1...99999 10000 Number of opera- tions possible at...
  • Page 567: Technical Data

    1MRS758755 C Condition monitoring functions Name Type Values (Range) Unit Description opening opera- tion T_TRV_CL FLOAT32 0...60000 Travel time of the CB dur- ing closing oper- ation T_SPR_CHR FLOAT32 0.00...99.99 The charging time of the CB spring NO_OPR INT32 0...99999 Number of CB operation cycle INA_DAYS...
  • Page 568: Technical Revision History

    Condition monitoring functions 1MRS758755 C Characteristic Value (at currents in the range of 10…40 × I Operate time accuracy ±1.0 % of the set value or ±20 ms Travelling time measurement +10 ms / -0 ms 7.1.10 Technical revision history Table 581: SSCBR Technical revision history Technical revision Change...
  • Page 569: Measurement Functions

    1MRS758755 C Measurement functions Measurement functions Basic measurements 8.1.1 Functions The three-phase current measurement function CMMXU is used for monitoring and metering the phase currents of the power system. The three-phase voltage measurement function VMMXU is used for monitoring and metering the phase-to-phase voltages of the power system.
  • Page 570 Measurement functions 1MRS758755 C Demand value calculation The demand values are calculated separately for each measurement function and per phase when applicable. The available measurement modes are "Linear" and "Logarithmic". The "Logarithmic" measurement mode is only effective for phase current and residual current demand value calculations. The demand value calculation mode is selected with the setting parameter Configuration >...
  • Page 571 1MRS758755 C Measurement functions Zero-point clamping A measured value under the zero-point clamping limit is forced to zero. This allows the noise in the input signal to be ignored. The active clamping function forces both the actual measurement value and the angle value of the measured signal to zero.
  • Page 572 Measurement functions 1MRS758755 C Figure 291: Presentation of operating limits The range information can also be decoded into boolean output signals on some of the measuring functions and the number of phases required to exceed or undershoot the limit before activating the outputs and can be set with the of phases setting in the three-phase measurement functions CMMXU and VMMXU.
  • Page 573 1MRS758755 C Measurement functions Function Settings for limit value supervision Low limit V Hi high limit res High-high limit Low-low limit Ps Seq A high limit , Ng Phase sequence current measure- High limit Seq A high limit , Zro A ment (CSMSQI) high limit Ps Seq A low limit , Ng Seq...
  • Page 574 Measurement functions 1MRS758755 C Figure 292: Integral deadband supervision The deadband value used in the integral calculation is configured with the deadband setting. The value represents the percentage of the difference between the maximum and minimum limit in the units of 0.001 percent x seconds. The reporting delay of the integral algorithms in seconds is calculated with the formula: deadband...
  • Page 575 1MRS758755 C Measurement functions Function Settings Maximum/minimum (=range) F deadband 75/35 (=40 Hz) Frequency measurement (FMMXU) Phase sequence current Ps Seq A deadband , Ng Seq A 40/0 (=40xIn) deadband , Zro A deadband measurement (CSMSQI) Ps Seq V deadband , Ng Seq V 4/0 (=4xUn) Phase sequence voltage deadband , Zro V deadband...
  • Page 576 Measurement functions 1MRS758755 C Figure 293: Complex power and power quadrants Table 585: Power quadrants Quadrant Current Power Lagging 0…+1.00 +ind Lagging 0…-1.00 -cap Leading 0…-1.00 -ind Leading 0…+1.00 +cap The active power P direction can be selected between forward and reverse Active power Dir and correspondingly the reactive power Q direction can with Reactive power Dir .
  • Page 577: Measurement Function Applications

    1MRS758755 C Measurement functions 8.1.3 Measurement function applications The measurement functions are used for power system measurement, supervision and reporting to LHMI, a monitoring tool within PCM600, or to the station level, for example, with IEC 61850. The possibility to continuously monitor the measured values of active power, reactive power, currents, voltages, power factors and so on, is vital for efficient production, transmission, and distribution of electrical energy.
  • Page 578 Measurement functions 1MRS758755 C 8.1.4.2 Function block Figure 294: Function block 8.1.4.3 Signals CMMXU Input signals Table 586: CMMXU Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current BLOCK BOOLEAN 0=False Block signal for all bi- nary outputs CMMXU Output signals...
  • Page 579 1MRS758755 C Measurement functions Parameter Values (Range) Unit Step Default Description A high limit 0.00...40.00 1.20 High warning cur- rent limit A low limit 0.00...40.00 0.00 Low warning cur- rent limit A low low limit 0.00...40.00 0.00 Low alarm current limit A deadband 100...100000...
  • Page 580 Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description Min demand IL2 FLOAT32 0.00...40.00 Minimum de- mand for Phase Min demand IL3 FLOAT32 0.00...40.00 Minimum de- mand for Phase Time max de- Timestamp Time of maxi- mand IL1 mum demand phase A Time max de- Timestamp...
  • Page 581 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description I_DMD_A FLOAT32 0.00...40.00 Demand value of IL1 current I_RANGE_A Enum IL1 Amplitude 0=normal range 1=high 2=low 3=high-high 4=low-low I_INST_B FLOAT32 0.00...40.00 IL2 Amplitude, magnitude of in- stantaneous val- I_ANGL_B FLOAT32 -180.00...180.00 IL2 current angle I_DB_B...
  • Page 582: Three-Phase Voltage Measurement Vmmxu

    Measurement functions 1MRS758755 C Table 591: CMMXU Technical data Characteristic Value Operation accuracy Depending on the frequency of the measured current: f ±2 ±0.5 % or ±0.002 × I (at currents in the range of 0.01...4.00 × I Suppression of harmonics DFT: -50 dB at f = n ×...
  • Page 583 1MRS758755 C Measurement functions VMMXU Input signals Table 593: VMMXU Input signals Name Type Default Description U_A_AB SIGNAL Phase to earth volt- age A or phase to phase voltage AB U_B_BC SIGNAL Phase to earth volt- age B or phase to phase voltage BC U_C_CA SIGNAL...
  • Page 584 Measurement functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description min and max as 0,001 % s) Table 596: VMMXU Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Measurement 2=DFT Selects used meas- 1=RMS mode urement mode 2=DFT 8.1.5.5 Monitored data...
  • Page 585 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description U_ANGL_AB FLOAT32 -180.00...180.00 U12 angle U_DB_AB FLOAT32 0.00...4.00 U12 Amplitude, magnitude of re- ported value U_DMD_AB FLOAT32 0.00...4.00 Demand value of U12 voltage U_RANGE_AB Enum U12 Amplitude 0=normal range 1=high 2=low 3=high-high 4=low-low...
  • Page 586 Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description 4=low-low U_INST_A FLOAT32 0.00...5.00 UL1 Amplitude, magnitude of in- stantaneous val- U_ANGL_A FLOAT32 -180.00...180.00 UL1 angle U_DMD_A FLOAT32 0.00...5.00 Demand value of UL1 voltage U_INST_B FLOAT32 0.00...5.00 UL2 Amplitude, magnitude of in- stantaneous val- U_ANGL_B FLOAT32...
  • Page 587: Residual Current Measurement Rescmmxu

    1MRS758755 C Measurement functions 8.1.6 Residual current measurement RESCMMXU 8.1.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Residual current measurement RESCMMXU 8.1.6.2 Function block Figure 296: Function block 8.1.6.3 Signals RESCMMXU Input signals Table 600: RESCMMXU Input signals Name Type Default...
  • Page 588 Measurement functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 5=off A Hi high limit res 0.00...40.00 0.20 High alarm current limit A high limit res 0.00...40.00 0.05 High warning cur- rent limit A deadband res 100...100000 2500 Deadband configu- ration value for in- tegral calculation.
  • Page 589: Residual Voltage Measurement Resvmmxu

    1MRS758755 C Measurement functions Name Type Values (Range) Unit Description I_RANGE_RES Enum Residual current 0=normal Amplitude range 1=high 2=low 3=high-high 4=low-low Max demand Io FLOAT32 0.00...40.00 Maximum de- mand for residu- al current Min demand Io FLOAT32 0.00...40.00 Minimum de- mand for residu- al current Time max de-...
  • Page 590 Measurement functions 1MRS758755 C 8.1.7 Residual voltage measurement RESVMMXU 8.1.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Residual voltage measurement RESVMMXU 8.1.7.2 Function block Figure 297: Function block 8.1.7.3 Signals RESVMMXU Input signals Table 607: RESVMMXU Input signals Name Type Default...
  • Page 591 1MRS758755 C Measurement functions Parameter Values (Range) Unit Step Default Description V high limit res 0.00...4.00 0.05 High warning volt- age limit V deadband res 100...100000 10000 Deadband configu- ration value for in- tegral calculation. (percentage of dif- ference between min and max as 0,001 % s) Table 610: RESVMMXU Non group settings (Advanced)
  • Page 592: Frequency Measurement Fmmxu

    Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description 3=high-high 4=low-low 8.1.7.6 Technical data Table 612: RESVMMXU Technical data Characteristic Value Operation accuracy Depending on the frequency of the measured voltage: f/f ±2 Hz ±0.5 % or ±0.002 × U Suppression of harmonics DFT: -50 dB at f = n ×...
  • Page 593 1MRS758755 C Measurement functions 8.1.8.3 Functionality The frequency measurement range is 35...75 Hz. The estimated frequencies outside the measurement range are considered to be out of range and the minimum and maximum values are then shown. When the frequencies cannot be measured, for example, due to too low voltage amplitude, the default value for frequency measurement can be selected with the Def frequency Sel setting parameter.
  • Page 594: Sequence Current Measurement Csmsqi

    Measurement functions 1MRS758755 C 8.1.8.6 Monitored data FMMXU Monitored data Table 617: FMMXU Monitored data Name Type Values (Range) Unit Description f-Hz FLOAT32 35.00...75.00 Measured fre- quency F_INST FLOAT32 35.00...75.00 Frequency, in- stantaneous val- F_DB FLOAT32 35.00...75.00 Frequency, re- ported value F_RANGE Enum Measured fre-...
  • Page 595 1MRS758755 C Measurement functions 8.1.9.2 Function block Figure 299: Function block 8.1.9.3 Signals CSMSQI Input signals Table 620: CSMSQI Input signals Name Type Default Description SIGNAL Zero sequence cur- rent SIGNAL Positive sequence current SIGNAL Negative sequence current 8.1.9.4 Settings CSMSQI Non group settings Table 621: CSMSQI Non group settings (Basic) Parameter...
  • Page 596 Measurement functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description (percentage of dif- ference between min and max as 0,001 % s) Ng Seq A Hi high 0.00...40.00 0.20 High alarm current limit for negative sequence current Ng Seq A High limit 0.00...40.00 0.05 High warning cur- rent limit for neg-...
  • Page 597 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description ZroSeq-A FLOAT32 0.00...40.00 Measured zero sequence current I2_INST FLOAT32 0.00...40.00 Negative se- quence current amplitude, in- stantaneous val- I2_ANGL FLOAT32 -180.00...180.00 Negative se- quence current angle I2_DB FLOAT32 0.00...40.00 Negative se- quence current amplitude, re- ported value...
  • Page 598: Sequence Voltage Measurement Vsmsqi

    Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description I0_DB FLOAT32 0.00...40.00 Zero sequence current ampli- tude, reported value I0_RANGE Enum Zero sequence 0=normal current ampli- 1=high tude range 2=low 3=high-high 4=low-low 8.1.9.6 Technical data Table 623: CSMSQI Technical data Characteristic Value Operation accuracy...
  • Page 599 1MRS758755 C Measurement functions 8.1.10.2 Function block Figure 300: Function block 8.1.10.3 Signals VSMSQI Input signals Table 625: VSMSQI Input signals Name Type Default Description SIGNAL Zero sequence volt- SIGNAL Positive phase se- quence voltage SIGNAL Negative phase se- quence voltage 8.1.10.4 Settings VSMSQI Non group settings...
  • Page 600 Measurement functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Ng Seq V High limit 0.00...4.00 0.05 High warning volt- age limit for nega- tive sequence volt- Ng Seq V low limit 0.00...4.00 0.00 Low warning volt- age limit for nega- tive sequence volt- Ng Seq V low low 0.00...4.00...
  • Page 601 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description stantaneous val- U2_ANGL FLOAT32 -180.00...180.00 Negative se- quence voltage angle U2_DB FLOAT32 0.00...4.00 Negative se- quence voltage amplitude, re- ported value U2_RANGE Enum Negative se- 0=normal quence voltage 1=high amplitude range 2=low 3=high-high 4=low-low...
  • Page 602: Three-Phase Power And Energy Measurement Pemmxu

    Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description U0_DB FLOAT32 0.00...4.00 Zero sequence voltage ampli- tude, reported value U0_RANGE Enum Zero sequence 0=normal voltage ampli- 1=high tude range 2=low 3=high-high 4=low-low 8.1.10.6 Technical data Table 628: VSMSQI Technical data Characteristic Value Operation accuracy...
  • Page 603 1MRS758755 C Measurement functions PEMMXU Input signals Table 629: PEMMXU Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current SIGNAL Phase A voltage SIGNAL Phase B voltage SIGNAL Phase C voltage RSTACM BOOLEAN 0=False...
  • Page 604 Measurement functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description 6=PhsCA 7=PhsA 8=PhsB 9=PhsC 8.1.11.5 Monitored data PEMMXU Monitored data Table 632: PEMMXU Monitored data Name Type Values (Range) Unit Description S-kVA FLOAT32 -999999.9...9999 Total Apparent 99.9 Power P-kW FLOAT32 -999999.9...9999 Total Active Pow-...
  • Page 605 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description Q_DB FLOAT32 -999999.9...9999 kVAr Reactive power, 99.9 magnitude of re- ported value Q_DMD FLOAT32 -999999.9...9999 kVAr Demand value of 99.9 reactive power PF_INST FLOAT32 -1.00...1.00 Power factor, magnitude of in- stantaneous val- PF_DB FLOAT32...
  • Page 606: Single-Phase Power And Energy Measurement Spemmxu

    Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description Time min dmd S Timestamp Time of mini- mum demand Time max dmd P Timestamp Time of maxi- mum demand Time min dmd P Timestamp Time of mini- mum demand Time max dmd Q Timestamp Time of maxi- mum demand...
  • Page 607 1MRS758755 C Measurement functions 8.1.12.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Single-phase power and energy SPEMMXU SP, SE SP, SE measurement 8.1.12.2 Function block Figure 302: Function block 8.1.12.3 Signals Table 635: SPEMMXU Input signals Name Type Default...
  • Page 608 Measurement functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Forward VArh Initial 0...999999999 Preset Initial value for forward reactive energy Reverse VArh Initial 0...999999999 Preset Initial value for reverse reactive energy 8.1.12.5 Monitored data Table 638: SPEMMXU Monitored data Name Type Values (Range)
  • Page 609 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description Max demand SL1 FLOAT32 -999999.9...9999 Maximum demand for phase A 99.9 Max demand SL2 FLOAT32 -999999.9...9999 Maximum demand for phase B 99.9 Max demand SL3 FLOAT32 -999999.9...9999 Maximum demand for phase C 99.9 Min demand SL1...
  • Page 610 Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description Min demand QL1 FLOAT32 -999999.9...9999 kVAr Minimum demand for phase A 99.9 Min demand QL2 FLOAT32 -999999.9...9999 kVAr Minimum demand for phase B 99.9 Min demand QL3 FLOAT32 -999999.9...9999 kVAr Minimum demand for phase B 99.9...
  • Page 611 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description Time min dmd Timestamp Time of minimum de- mand phase C Time min dmd Timestamp Time of minimum de- mand phase A Time min dmd Timestamp Time of minimum de- mand phase B Time min dmd Timestamp...
  • Page 612 Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description P_INST_A FLOAT32 -999999.9...9999 Active power, magni- tude of instantaneous 99.9 value, phase A P_INST_B FLOAT32 -999999.9...9999 Active power, magni- tude of instantaneous 99.9 value, phase B P_INST_C FLOAT32 -999999.9...9999 Active power, magni- tude of instantaneous 99.9 value, phase C...
  • Page 613 1MRS758755 C Measurement functions Name Type Values (Range) Unit Description Q_DB_B FLOAT32 -999999.9...9999 kVAr Reactive power, magni- tude of reported value, 99.9 phase B Q_DB_C FLOAT32 -999999.9...9999 kVAr Reactive power, magni- tude of reported value, 99.9 phase C Q_DMD_A FLOAT32 -999999.9...9999 kVAr Demand value of reac-...
  • Page 614 Measurement functions 1MRS758755 C Name Type Values (Range) Unit Description EA_RV_ACM_A INT64 0...999999999 Accumulated reverse active energy value, phase A EA_RV_ACM_B INT64 0...999999999 Accumulated reverse active energy value, phase B EA_RV_ACM_C INT64 0...999999999 Accumulated reverse active energy value, phase C ER_RV_ACM_A INT64 0...999999999...
  • Page 615: Disturbance Recorder Rdre

    1MRS758755 C Measurement functions 8.1.12.6 Technical data Table 639: SPEMMXU Technical data Characteristic Value Operation accuracy At all three currents in range 0.10…1.20 × I At all three voltages in range 0.50…1.15 × U At the frequency f ±1 Hz Active power and energy in range |PF| >...
  • Page 616 Measurement functions 1MRS758755 C the corresponding analog channel. In addition, the user can enable or disable each Operation parameter of analog channel of the disturbance recorder by setting the the corresponding analog channel to "on" or "off". All analog channels of the disturbance recorder that are enabled and have a valid signal type mapped are included in the recording.
  • Page 617 1MRS758755 C Measurement functions Manual triggering The recorder can be triggered manually via the LHMI or via communication by Trig recording parameter to TRUE. setting the Periodic triggering Periodic triggering means that the recorder automatically makes a recording at Periodic trig time certain time intervals.
  • Page 618 Measurement functions 1MRS758755 C Table 640: Sampling frequencies of the disturbance recorder analog channels Storage rate Recording Sampling Sampling Sampling Sampling (samples per length frequency of frequency of frequency of frequency of fundamental analog binary analog binary cycle) channels, channels, channels, channels, when the...
  • Page 619 1MRS758755 C Measurement functions 8.2.2.6 Deletion of recordings There are several ways to delete disturbance recordings. The recordings can be deleted individually or all at once. Individual disturbance recordings can be deleted with PCM600 or any appropriate computer software, which can access the protection relay's C:\COMTRADE folder. The disturbance recording is not removed from the protection relay's memory until both of the corresponding COMTRADE files, .CFG and .DAT, are deleted.
  • Page 620: Configuration

    Measurement functions 1MRS758755 C Saturation mode In saturation mode, the captured recordings cannot be overwritten with new recordings. Capturing the data is stopped when the recording memory is full, that is, when the maximum number of recordings is reached. In this case, the event Memory full parameter.
  • Page 621: Application

    1MRS758755 C Measurement functions Any external or internal digital signal of the protection relay which can be dynamically mapped can be connected to the binary channels of the disturbance recorder. These signals can be, for example, the start and trip signals from protection function blocks or the external binary inputs of the protection relay.
  • Page 622: Settings

    Measurement functions 1MRS758755 C 8.2.5 Settings 8.2.5.1 RDRE Non-group general settings Table 641: RDRE Non-group general settings Parameter Values Unit Step Default Description (Range) Operation 1=on 1=on Disturbance recorder 5=off on/off Record length 10...500 fundamental Size of the re- cycles cording in fundamental cycles...
  • Page 623 1MRS758755 C Measurement functions Table 642: RDRE Non-group channel settings Parameter Values Unit Step Default Description (Range) Operation 1=on Analog chan- 1=on nel is enabled 5=off or disabled Channel se- 0=Disabled Select the sig- 0=Disabled lection nal to be re- 1=Io corded by this channel.
  • Page 624 Measurement functions 1MRS758755 C Parameter Values Unit Step Default Description (Range) 29=U12 30=U23 31=U31 32=UL1 33=UL2 34=UL3 35=U12B 36=U23B 37=U31B 38=UL1B 39=UL2B 40=UL3B Channel id 0 to 64 char- DR analog Identification text acters, alpha- channel X text for the numeric analog chan- nel used in...
  • Page 625: Monitored Data

    1MRS758755 C Measurement functions Parameter Values Unit Step Default Description (Range) 3=Both 4=Level trig- ger off Storage mode 0=Waveform Storage mode for the binary 1=Trend / cy- channel Channel id 0 to 64 char- DR binary Identification text acters, alpha- channel X text for the numeric...
  • Page 626 Measurement functions 1MRS758755 C 8.2.7 Technical revision history Table 646: RDRE Technical revision history Technical revision Change ChNum changed to EChNum (RADR's) RADR9...12 added (Analog channels 9...12) RBDR33...64 added (Binary channels 33...64) Channel New channels added to parameter selection Selection names for Trig Recording and Clear Recordings updated Channel selection setting are...
  • Page 627: Control Functions

    1MRS758755 C Control functions Control functions Circuit-breaker control CBXCBR and Disconnector control DCXSWI 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Circuit breaker con- CBXCBR I<->O CB I<->O CB trol Disconnector control DCXSWI I<->O DCC I<->O DCC 9.1.2 Function block...
  • Page 628: Operation Principle

    Control functions 1MRS758755 C value. The functions are designed according to the IEC 61850-7-4 standard with logical nodes CILO, CSWI and XSWI/XCBR. The circuit breaker and disconnector control functions have an operation counter for closing and opening cycles. The counter value can be read and written remotely from the place of operation or via LHMI.
  • Page 629 1MRS758755 C Control functions Figure 305: Enabling and blocking logic for CLOSE_ENAD and OPEN_ENAD signals Opening and closing operations The opening and closing operations are available via communication, binary inputs or LHMI commands. As a prerequisite for control commands, there are enabling and blocking functionalities for both opening and closing commands (CLOSE_ENAD and OPEN_ENAD signals).
  • Page 630 Control functions 1MRS758755 C Figure 306: Condition for enabling the close request (CL_REQ) for CBXCBR When the open command is given from communication, via LHMI or activating the AU_OPEN input, it is processed only if OPEN_ENAD is TRUE. OP_REQ output is also available.
  • Page 631 1MRS758755 C Control functions Figure 308: OPEN and CLOSE outputs logic for CBXCBR Opening and closing pulse widths Adaptive pulse setting. The function The pulse width type can be defined with the provides two modes to characterize the opening and closing pulse widths. When Adaptive pulse is set to “TRUE”, it causes a variable pulse width, which means that the output pulse is deactivated when the object state shows that the apparatus has entered the correct state.
  • Page 632: Application

    Control functions 1MRS758755 C In direct operation, a single message is used to initiate the control action of a physical device. The direct operation method uses less communication network capacity and bandwidth than the SBO method, because the procedure needs fewer messages for accurate operation.
  • Page 633: Signals

    1MRS758755 C Control functions Control and status indication facilities are implemented in the same package with CBXCBR and DCXSWI. When primary components are controlled in the energizing phase, for example, the correct execution sequence of the control commands must be ensured. This can be achieved, for example, with interlocking based on the status indication of the related primary components.
  • Page 634 Control functions 1MRS758755 C Name Type Default Description ENA_CLOSE BOOLEAN 1=True Enables closing BLK_OPEN BOOLEAN 0=False Blocks opening BLK_CLOSE BOOLEAN 0=False Blocks closing AU_OPEN BOOLEAN 0=False Auxiliary open AU_CLOSE BOOLEAN 0=False Auxiliary close TRIP BOOLEAN 0=False Trip signal SYNC_OK BOOLEAN 1=True Synchronism-check SYNC_ITL_BYP...
  • Page 635: Settings

    1MRS758755 C Control functions 9.1.6.3 CBXCBR Output signals Table 650: CBXCBR Output signals Name Type Description SELECTED BOOLEAN Object selected EXE_OP BOOLEAN Executes the command for open direction EXE_CL BOOLEAN Executes the command for close direction OP_REQ BOOLEAN Open request CL_REQ BOOLEAN Close request...
  • Page 636 Control functions 1MRS758755 C Table 652: CBXCBR Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on Operation mode 1=on on/off 5=off Select timeout 10000...300000 10000 30000 Select timeout in Pulse length 10...60000 Open and close pulse length Control model 4=sbo-with-en- Select control mod-...
  • Page 637: Monitored Data

    1MRS758755 C Control functions Table 655: DCXSWI Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Operation counter 0...10000 Breaker operation cycles Adaptive pulse 1=True Stop in right posi- 0=False tion 1=True Event delay 0...60000 10000 Event delay of the intermediate posi- tion Vendor...
  • Page 638: Disconnector Position Indicator Dcsxswi And Earthing Switch Indication Essxswi

    Control functions 1MRS758755 C 9.1.9 Technical revision history Table 658: CBXCBR Technical revision history Technical revision Change Interlocking bypass input ( ITL_BYPASS and opening enabled ( )/clos- OPEN_ENAD ing enabled ( ) outputs added. CLOSE_ENAD bypasses the ITL_BYPASS ENA_OPEN states. ENA_CLOSE Internal improvement.
  • Page 639: Functionality

    1MRS758755 C Control functions Figure 312: Function block 9.2.3 Functionality The functions DCSXSWI and ESSXSWI indicate remotely and locally the open, close and undefined states of the disconnector and earthing switch. The functionality of both is identical, but each one is allocated for a specific purpose visible in the function names.
  • Page 640: Signals

    Control functions 1MRS758755 C break switches and earthing switches, which represent the lowest level of power switching devices without short-circuit breaking capability. 9.2.6 Signals 9.2.6.1 DCSXSWI Input signals Table 661: DCSXSWI Input signals Name Type Default Description POSOPEN BOOLEAN 0=False Signal for open po- sition of apparatus from I/O...
  • Page 641: Settings

    1MRS758755 C Control functions 9.2.6.4 ESSXSWI Output signals Table 664: ESSXSWI Output signals Name Type Description OPENPOS BOOLEAN Apparatus open position CLOSEPOS BOOLEAN Apparatus closed position OKPOS BOOLEAN Apparatus position is ok 9.2.7 Settings 9.2.7.1 DCSXSWI Non group settings Table 665: DCSXSWI Non group settings (Basic) Parameter Values (Range) Unit...
  • Page 642: Monitored Data

    Control functions 1MRS758755 C 9.2.8 Monitored data 9.2.8.1 DCSXSWI Monitored data Table 669: DCSXSWI Monitored data Name Type Values (Range) Unit Description POSITION Dbpos Apparatus posi- 0=intermediate tion indication 1=open 2=closed 3=faulty 9.2.8.2 ESSXSWI Monitored data Table 670: ESSXSWI Monitored data Name Type Values (Range)
  • Page 643: Identification

    1MRS758755 C Control functions Synchronism and energizing check SECRSYN 9.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchronism and energizing check SECRSYN SYNC 9.3.2 Function block Figure 313: Function block 9.3.3 Functionality The synchronism and energizing check function SECRSYN checks the condition across the circuit breaker from separate power system parts and gives the permission to close the circuit breaker.
  • Page 644 Control functions 1MRS758755 C Energizing check Synchro check Figure 314: Functional module diagram If Energizing check is passed, no further conditions need to be fulfilled to permit closing. Otherwise, Synchro check function can operate either with the U_AB or U_A VT connection setting voltages.
  • Page 645 1MRS758755 C Control functions Live dead mode Description One Live, Dead Bus de-energized and line energized or line de-energized and bus energized Not Both Live Both line and bus de-energized or bus de- energized and line energized or line de-ener- gized and bus energized When the energizing direction corresponds to the settings, the situation has to be Energizing time setting before the circuit breaker...
  • Page 646 Control functions 1MRS758755 C Difference angle Difference frequency U_Bus U_Line = abs( U_Bus U_Line U_Bus Difference voltage U_Line U_Line U_Bus Live line or bus value Dead line or bus value Frequency[Hz] Frequency deviation Rated frequency Figure 315: Conditions to be fulfilled when detecting synchronism between systems When the frequency, phase angle and voltage conditions are fulfilled, the duration of the synchronism conditions is checked so as to ensure that they are still met when the condition is determined on the basis of the measured frequency and...
  • Page 647 1MRS758755 C Control functions checking the synchronism. When synchronism is detected (according to the settings), the SYNC_OK output is set to TRUE (logic '1') and it stays TRUE as long as the conditions are fulfilled. The command input is ignored in the continuous control mode.
  • Page 648 Control functions 1MRS758755 C The closing signal is delivered only once for each activated external closing Close command signal. The pulse length of the delivered closing is set with the pulse setting. t = Close pulse Figure 318: Determination of the pulse length of the closing signal In the command control mode operation, there are alarms for a failed closing attempt ( CL_FAIL_AL) and for a command signal that remains active too long ( CMD_FAIL_AL).
  • Page 649 1MRS758755 C Control functions Maximum Syn time Close pulse Figure 320: Determination of the alarm limit for a still-active command signal Maximum Syn time , starting from the moment the Closing is permitted during external command signal CL_COMMAND is activated. The CL_COMMAND input must be kept active for the whole time that the closing conditions are waited to be fulfilled.
  • Page 650: Application

    Control functions 1MRS758755 C Figure 321: Angle difference when power transformer is in synchrocheck zone The vector group of the power transformer is defined with clock numbers, where the value of the hour pointer defines the low-voltage-side phasor and the high- voltage-side phasor is always fixed to the clock number 12, which is same as zero.
  • Page 651 1MRS758755 C Control functions Network and the generator running in parallel with the network are connected through the line AB. When a fault occurs between A and B, the protection relay protection opens the circuit breakers A and B, thus isolating the faulty section from the network and making the arc that caused the fault extinguish.
  • Page 652: Signals

    Control functions 1MRS758755 C differences presented in the monitored data view. These values should be within the permitted tolerances, that is, close to zero. Figure 323 shows an example where the synchrocheck is used for the circuit breaker closing between a busbar and a line. The phase-to-phase voltages are measured from the busbar and also one phase-to-phase voltage from the line is measured.
  • Page 653: Settings

    1MRS758755 C Control functions 9.3.6.2 SECRSYN Output signals Table 675: SECRSYN Output signals Name Type Description SYNC_INPRO BOOLEAN Synchronizing in progress SYNC_OK BOOLEAN Systems in synchronism CL_FAIL_AL BOOLEAN CB closing failed CMD_FAIL_AL BOOLEAN CB closing request failed LLDB BOOLEAN Live Line, Dead Bus LLLB BOOLEAN Live Line, Live Bus...
  • Page 654: Monitored Data

    Control functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Dead line value 0.1...0.8 Voltage low limit line for energizing check Live line value 0.2...1.0 Voltage high limit line for energizing check Dead bus value 0.1...0.8 Voltage low limit bus for energizing check Live bus value...
  • Page 655: Technical Data

    1MRS758755 C Control functions Name Type Values (Range) Unit Description 4=Both Dead U_DIFF_MEAS FLOAT32 0.00...1.00 Calculated volt- age amplitude difference FR_DIFF_MEAS FLOAT32 0.000...0.100 Calculated volt- age frequency difference PH_DIFF_MEAS FLOAT32 0.00...180.00 Calculated volt- age phase angle difference U_DIFF_SYNC BOOLEAN Voltage differ- 0=False ence out of limit 1=True...
  • Page 656: Identification

    Control functions 1MRS758755 C Autoreclosing DARREC 9.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Autoreclosing DARREC O -> I 9.4.2 Function block Figure 324: Function block 9.4.3 Functionality About 80 to 85 percent of faults in the MV overhead lines are transient and automatically cleared with a momentary de-energization of the line.
  • Page 657 1MRS758755 C Control functions 9.4.3.1 Protection signal definition Control line setting defines which of the initiation signals are protection start and trip signals and which are not. With this setting, the user can distinguish the Control line setting is a bit mask, blocking signals from the protection signals.
  • Page 658: Operation Principle

    Control functions 1MRS758755 C Figure 325: Master and slave scheme If the AR unit is defined as a master by setting its terminal priority to high: • The unit activates the CMD_WAIT output to the low priority slave unit whenever a shot is in progress, a reclosing is unsuccessful or the BLK_RCLM_T input is active •...
  • Page 659: Rec615 & Rer615

    1MRS758755 C Control functions Figure 326: Functional module diagram 9.4.4.1 Signal collection and delay logic When the protection trips, the initiation of autoreclosing shots is in most applications executed with the INIT_1...6 inputs. The DEL_INIT2...4 inputs are not used. In some countries, starting the protection stage is also used for the shot initiation.
  • Page 660 Control functions 1MRS758755 C Figure 327: Schematic diagram of delayed initiation input signals In total, the AR function contains six separate initiation lines used for the initiation or blocking of the autoreclosing shots. These lines are divided into two types of channels.
  • Page 661 1MRS758755 C Control functions Str 3 delay shot 4 • Time delay settings for the DEL_INIT_4 signal Str 4 delay shot 1 • Str 4 delay shot 2 • Str 4 delay shot 3 • Str 4 delay shot 4 •...
  • Page 662 Control functions 1MRS758755 C Figure 329: Signal scheme of autoreclosing operation initiated with protection start signal The autoreclosing shot is initiated with a start signal of the protection function Str 2 delay after the start delay time has elapsed. The autoreclosing starts when the shot 1 setting elapses.
  • Page 663 1MRS758755 C Control functions 9.4.4.2 Shot initiation Figure 331: Example of an autoreclosing program with a reclose scheme matrix In the AR function, each shot can be programmed to locate anywhere in the reclose scheme matrix. The shots are like building blocks used to design the reclose program.
  • Page 664 Control functions 1MRS758755 C Shot number CBB1 = 1 • CBB2 settings are: Second reclose time = 10s • Init signals CBB2 = 6 (the second and third bits: 011000 = 6) • Blk signals CBB2 = 16 (the fifth bit: 000010 = 16) •...
  • Page 665 1MRS758755 C Control functions Figure 332: Logic diagram of auto-initiation sequence detection Auto initiation Cnd setting to be the Automatic initiation can be selected with the following: • Not allowed: no automatic initiation is allowed • When the synchronization fails, the automatic initiation is carried out when the auto wait time elapses and the reclosing is prevented due to a failure during the synchronism check •...
  • Page 666 Control functions 1MRS758755 C Figure 333: Example of an auto-initiation sequence with synchronization failure in the first shot and circuit breaker closing failure in the second shot In the first shot, the synchronization condition is not fulfilled ( SYNC is FALSE). When the auto wait timer elapses, the sequence continues to the second shot.
  • Page 667 1MRS758755 C Control functions The shot pointer increases when the reclose time elapses or at the falling edge of the INC_SHOTP signal. When SHOT_PTR has the value six, the AR function is in a so called pre-lockout state. If a new initiation occurs during the pre-lockout state, the AR function goes to lockout.
  • Page 668 Control functions 1MRS758755 C Figure 335: Initiation during discrimination time - AR function goes to lockout The discrimination time starts when the close command CLOSE_CB has been given. If a start input is activated before the discrimination time has elapsed, the AR function goes to lockout.
  • Page 669 1MRS758755 C Control functions Auto lockout reset setting is not in use, the lockout can be released If the RecRs parameter. only with the The AR function can go to lockout for many reasons. • The INHIBIT_RECL input is active. •...
  • Page 670 Control functions 1MRS758755 C • "always": the PROT_CRD output is constantly active CB_TRIP DARREC PHLPTOC INIT_1 OPEN_CB OPERATE INIT_2 CLOSE_CB CB_CLOSE CMD_WAIT INIT_3 START PROT_CRD INIT_4 INIT_5 PROT_DISA INIT_6 INPRO BLOCK DEL_INIT_2 LOCKED ENA_MULT DEL_INIT_3 UNSUC_RECL DEL_INIT_4 AR_ON BLK_RECL_T BLK_RCLM_T BLK_THERM CB_POSITION CB_POS...
  • Page 671: Counters

    1MRS758755 C Control functions SOTF is activated when the AR function is enabled or when the AR function is started and the SOTF should remain active for the reclaim time. SOTF is active. When SOTF is detected, the parameter Manual close mode setting is set to FALSE and the circuit breaker If the has been manually closed during an autoreclosing shot, the AR unit goes to an immediate lockout.
  • Page 672: Application

    The autoreclose function can be used with every circuit breaker that has the ability for a reclosing sequence. In DARREC autoreclose function the implementing method of autoreclose sequences is patented by ABB. Table 682: Important definitions related to auto-reclosing Autoreclose...
  • Page 673 1MRS758755 C Control functions 9.4.6.1 Shot initiation Figure 338: Example of an autoreclosing program with a reclose scheme matrix In the AR function, each shot can be programmed to locate anywhere in the reclose scheme matrix. The shots are like building blocks used to design the reclose program.
  • Page 674 Control functions 1MRS758755 C Blk signals CBB1 = 16 (the fifth bit: 000010 = 16) • Shot number CBB1 = 1 • CBB2 settings are: Second reclose time = 10s • Init signals CBB2 = 6 (the second and third bits: 011000 = 6) •...
  • Page 675 1MRS758755 C Control functions Figure 339: Logic diagram of auto-initiation sequence detection Auto initiation Cnd setting to be the Automatic initiation can be selected with the following: • Not allowed: no automatic initiation is allowed • When the synchronization fails, the automatic initiation is carried out when the auto wait time elapses and the reclosing is prevented due to a failure during the synchronism check •...
  • Page 676 Control functions 1MRS758755 C Figure 340: Example of an auto-initiation sequence with synchronization failure in the first shot and circuit breaker closing failure in the second shot In the first shot, the synchronization condition is not fulfilled ( SYNC is FALSE). When the auto wait timer elapses, the sequence continues to the second shot.
  • Page 677 1MRS758755 C Control functions In case there are multiple CBBs allowed for execution, the CBB with the smallest number is chosen. For example, if CBB2 and CBB4 request an execution, CBB2 is allowed to execute the shot. The auto-reclose function can perform up to five auto-reclose shots or cycles. 9.4.6.3 Configuration examples CB_ TRIP...
  • Page 678 Control functions 1MRS758755 C Figure 342: Autoreclosing sequence with two shots First reclose time Time delay of high-speed autoreclosing, here: HSAR Second reclose time Time delay of delayed autoreclosing, here: Operating time for the protection stage to clear the fault Protection Operating time for opening the circuit breaker CB_O...
  • Page 679 1MRS758755 C Control functions Example 2 There are two separate sequences implemented with three shots. Shot 1 is implemented by CBB1 and it is initiated with the high stage of the overcurrent protection (I>>). Shot 1 is set as a high-speed autoreclosing with a short time delay.
  • Page 680 Control functions 1MRS758755 C In this case, the number of needed CBBs is three, that is, the first shot's reclosing time depends on the initiation signal. Shot 1 INIT_1 (I>>) (CBB1) Lockout 1.0s Shot 1 Shot 2 INIT_2 (I>) Lockout (CBB2) (CBB3) INIT_3 (Io>)
  • Page 681 1MRS758755 C Control functions Figure 346: Simplified logic diagram of initiation lines Each delayed initiation line has four different time settings: Table 685: Settings for delayed initiation lines Setting name Description and purpose Str x delay shot 1 Time delay for the line, where DEL_INIT_x x is the number of the line 2, 3 or 4.
  • Page 682 Control functions 1MRS758755 C Str 2 delay shot 2 = 60s • Str 2 delay shot 3 = 60s • Operation in a permanent fault: Protection starts and activates the DEL_INIT 2 input. After 0.05 seconds, the first autoreclose shot is initiated. The function opens the circuit breaker: the OPEN_CB output activates.
  • Page 683: Signals

    1MRS758755 C Control functions 9.4.7 Signals 9.4.7.1 DARREC Input signals Table 686: DARREC Input signals Name Type Default Description INIT_1 BOOLEAN 0=False AR initialization / blocking signal 1 INIT_2 BOOLEAN 0=False AR initialization / blocking signal 2 INIT_3 BOOLEAN 0=False AR initialization / blocking signal 3 INIT_4...
  • Page 684: Settings

    Control functions 1MRS758755 C Name Type Default Description RECL_ON BOOLEAN 0=False Level sensitive signal for allowing (high) / not allowing (low) re- closing SYNC BOOLEAN 0=False Synchronizing check fulfilled 9.4.7.2 DARREC Output signals Table 687: DARREC Output signals Name Type Description OPEN_CB BOOLEAN...
  • Page 685 1MRS758755 C Control functions Parameter Values (Range) Unit Step Default Description 3=On Close pulse time 10...10000 CB close pulse time Reclaim time 100...1800000 10000 Reclaim time Terminal priority 1=None Terminal priority 1=None 2=Low (follower) 3=High (master) Synchronisation set 0...127 Selection for syn- chronizing require- ment for reclosing Auto initiation cnd...
  • Page 686 Control functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Frq Op counter lim- 0...250 Frequent operation counter lockout limit Frq Op counter 1...250 Frequent operation time counter time Frq Op recovery 1...250 Frequent operation time counter recovery time Auto init 0...63 Defines INIT lines...
  • Page 687: Monitored Data

    1MRS758755 C Control functions Parameter Values (Range) Unit Step Default Description 1=True CB closed Pos sta- 0=False Circuit breaker 0=False closed position sta- 1=True Blk signals CBB1 0...63 Blocking lines for CBB1 Blk signals CBB2 0...63 Blocking lines for CBB2 Blk signals CBB3 0...63 Blocking lines for...
  • Page 688 Control functions 1MRS758755 C Name Type Values (Range) Unit Description FRQ_OPR_AL BOOLEAN Frequent opera- 0=False tion counter 1=True alarm STATUS Enum AR status signal -1=Not defined for IEC61850 1=Ready 2=InProgress 3=Successful 4=WaitingFor- Trip 5=TripFromPro- tection 6=FaultDisap- peared 7=WaitToCom- plete 8=CBclosed 9=CycleUnsuc- cessful 10=Unsuccessful...
  • Page 689: Technical Data

    1MRS758755 C Control functions Name Type Values (Range) Unit Description SUC_RECL BOOLEAN Indicates a suc- 0=False cessful reclosing 1=True sequence UNSUC_CB BOOLEAN Indicates an un- 0=False successful CB 1=True closing CNT_SHOT1 INT32 0...2147483647 Resetable oper- ation counter, shot 1 CNT_SHOT2 INT32 0...2147483647 Resetable oper-...
  • Page 690: Technical Revision History

    Control functions 1MRS758755 C 9.4.11 Technical revision history Table 692: DARREC Technical revision history Technical revision Change output removed and re- PROT_DISA moved the related settings CB closed Pos status The default value of the setting changed from "True" to "False" SHOT_PTR output range 0...7 (earlier 0...6) Monitored data ACTIVE transferred to be ACT visible output.
  • Page 691: Operation Principle

    1MRS758755 C Control functions Automatic reconnection to the preferred bus is established when the voltage on the preferred bus has reached a normal level. The preferred main bus can be selected from the settings. The automatic operation can be selected on/off from a virtual button on the SLD.
  • Page 692 Control functions 1MRS758755 C UN_U_BUS1 BUS1_FAULT BLOCK BUS1_HEALTHY UN_U_BUS2 BUS2_FAULT BUS2_HEALTHY Figure 349: Sub module diagram for Bus fault check Control logic Depending on the Main bus priority setting, the control logic reads the states of the circuit breakers and performs automatic transfers depending on bus voltage presence and blocking conditions.
  • Page 693 1MRS758755 C Control functions Output signal Operation description Operation type is activated after OPEN_CB1 CB1 Trip delay has expired. Setting Main bus priority = Automatic reconnection “bus 2”. If CB1 position is closed and bus 2 is healthy, OPEN_CB1 Open CB1 de- activated after lay has expired.
  • Page 694 Control functions 1MRS758755 C CB2 control logic Figure 351: Sub module diagram for CB2 control logic Operation of the output signals is described in the table. Table 694: Operating conditions for output signals of CB2 Output signal Operation description Operation type If bus 2 is faulty and Protection OPEN_CB2...
  • Page 695: Application

    1MRS758755 C Control functions Output signal Operation description Operation type If both CB1 and CB2 are open, bus 1 is faulty and bus 2 is healthy, is acti- CLOSE_CB2 Close CB2 delay vated after has expired. Activation of BLOCK input deactivates the outputs and resets the timers. In progress logic Automatic operation ongoing is signalled outside to output INPRO.
  • Page 696 Control functions 1MRS758755 C 9.5.5 Application Figure 353: Application configuration example Figure 353 A recommended application configuration example is described in Undervoltage detection on bus 1 and undervoltage detection on bus 2 are connected directly to the UN_U_BUS1 and UN_U_BUS2. The undervoltage indication at each bus can be detected from for example functions PHPTUV, VMMXU or PHSVPR.
  • Page 697: Signals

    1MRS758755 C Control functions Figure 354: Signal scheme illustrating an automatic transfer switch and an automatic reconnection operation caused by a temporary undervoltage on the preferred bus 1 (all other excluded inputs are "FALSE" during the sequence) 9.5.6 Signals Table 695: ATSABTC Input signals Name Type Default...
  • Page 698: Settings

    Control functions 1MRS758755 C Name Type Default Description CB2_POSOPEN BOOLEAN 0=False Circuit breaker open sta- tus for bus 2 CB2_POSCLOSE BOOLEAN 0=False Circuit breaker close sta- tus for bus 2 Table 696: ATSABTC Output signals Name Type Description OPEN_CB1 BOOLEAN Circuit breaker open command for bus 1 CLOSE_CB1 BOOLEAN...
  • Page 699: Technical Data

    1MRS758755 C Control functions Name Type Values (Range) Unit Description 4=test/blocked 5=off 9.5.9 Technical data Table 699: ATSABTC Technical data Characteristic Value Operation time accuracy ±1.0% of the set value or ±20 ms REC615 & RER615 Technical Manual...
  • Page 700: Power Quality Measurement Functions

    Power quality measurement functions 1MRS758755 C Power quality measurement functions 10.1 Current total demand distortion CMHAI 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Current total demand distortion CMHAI PQM3I PQM3I 10.1.2 Function block Figure 355: Function block 10.1.3 Functionality...
  • Page 701: Application

    1MRS758755 C Power quality measurement functions Distortion measurement The distortion measurement module measures harmonics up to the 11th harmonic. The total demand distortion TDD is calculated from the measured harmonic components with the formula ∑ max_ demand (Equation 75) harmonic component The maximum demand current measured by CMMXU max_demand If CMMXU is not available in the configuration or the measured maximum demand...
  • Page 702: Signals

    Power quality measurement functions 1MRS758755 C monitoring is not only an effective customer service strategy but also a way to protect a utility's reputation for quality power and service. CMHAI provides a method for monitoring the power quality by means of the current waveform distortion.
  • Page 703: Monitored Data

    1MRS758755 C Power quality measurement functions Parameter Values (Range) Unit Step Default Description 2=Non-sliding TDD alarm limit 1.0...100.0 50.0 TDD alarm limit Table 703: CMHAI Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Initial Dmd current 0.10...1.00 0.01 1.00 Initial demand cur-...
  • Page 704: Voltage Total Harmonic Distortion Vmhai

    Power quality measurement functions 1MRS758755 C Name Type Values (Range) Unit Description 3SMHTDD_C FLOAT32 0.00...500.00 3 second mean value of TDD for phase C DMD_TDD_C FLOAT32 0.00...500.00 Demand value for TDD for phase C 10.2 Voltage total harmonic distortion VMHAI 10.2.1 Identification Function description...
  • Page 705: Application

    1MRS758755 C Power quality measurement functions U_A_AB Distortion Demand U_B_BC measure- ALARM calculation ment U_C_CA BLOCK Figure 358: Functional module diagram Distortion measurement The distortion measurement module measures harmonics up to the 11th harmonic. The total harmonic distortion THD for voltage is calculated from the measured harmonic components with the formula ∑...
  • Page 706: Settings

    Power quality measurement functions 1MRS758755 C 10.2.6.1 VMHAI Input signals Table 705: VMHAI Input signals Name Type Default Description U_A_AB SIGNAL Phase-to-earth volt- age A or phase-to- phase voltage AB U_B_BC SIGNAL Phase-to-earth volt- age B or phase-to- phase voltage BC U_C_CA SIGNAL Phase-to-earth volt-...
  • Page 707: Technical Revision History

    1MRS758755 C Power quality measurement functions 10.2.8 Monitored data 10.2.8.1 VMHAI Monitored data Table 708: VMHAI Monitored data Name Type Values (Range) Unit Description Max demand FLOAT32 0.00...500.00 Maximum de- THD UL1 mand THD for phase A Max demand FLOAT32 0.00...500.00 Maximum de- THD UL2...
  • Page 708: Voltage Variation Phqvvr

    Power quality measurement functions 1MRS758755 C 10.2.9 Technical revision history Table 709: VMHAI Technical revision history Technical revision Change Internal improvement. Internal improvement. 10.3 Voltage variation PHQVVR 10.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Voltage variation PHQVVR...
  • Page 709: Operation Principle

    1MRS758755 C Power quality measurement functions 10.3.4 Operation principle Operation setting. The The function can be enabled and disabled with the corresponding parameter values are "On" and "Off". The operation of PHQVVR can be described with a module diagram. All the modules in the diagram are explained in the next sections.
  • Page 710 Power quality measurement functions 1MRS758755 C consequence is that if only one or two phases are monitored, it is sufficient that these monitored phases activate the START output. 10.3.4.2 Variation detection The module compares the measured voltage against the limit settings. If there is Reference voltage setting can be set a permanent undervoltage or overvoltage, the to this voltage level to avoid the undesired voltage dip or swell indications.
  • Page 711 1MRS758755 C Power quality measurement functions Voltage swell set Voltage dip set Voltage Int set TRUE SWELLST FALSE TRUE DIPST FALSE TRUE INTST FALSE A) Three phase mode TRUE SWELLST FALSE TRUE DIPST FALSE TRUE INTST FALSE B) Single phase mode Figure 361: Detection of three-phase voltage interruption The module measures voltage variation magnitude on each phase separately, that is, there are phase-segregated outputs ST_A, ST_B and ST_C for voltage variation...
  • Page 712 Power quality measurement functions 1MRS758755 C also the DIPST outputs are activated. When the TRMS voltage magnitude remains Voltage dip set 2 and Voltage dip set 1 for a period longer than VVa dip between time 2 (shorter time than VVa dip time 3 ), a momentary dip event is detected. VVa dip Furthermore, if the signal magnitude stays between the limits longer than time 3 (shorter time than VVa Dur max ), a temporary dip event is detected.
  • Page 713 1MRS758755 C Power quality measurement functions Voltage xUref 1.40 Instantaneous Momentary swell swell Maximum duration Temporary swell Voltage swell set 1 swell Voltage swell set 2 Voltage swell set 3 1.00 Time (ms) VVa swell time 1 VVa swell time 2 VVa swell time 3 VVa Dur Max Figure 363: Voltage swell operational regions...
  • Page 714 Power quality measurement functions 1MRS758755 C or time requirement is again fulfilled. Another possibility is that if the time condition Voltage is not fulfilled for an instantaneous dip detection but the signal rises above dip set 1 , the already elapsed time is included in the momentary dip timer. Especially the interruption time is included in the dip time.
  • Page 715 1MRS758755 C Power quality measurement functions Phase mode setting is "Three Phase", the example case does not result in any activation. Figure 365: Single-phase interruption for the Phase mode value "Single Phase" 10.3.4.5 Three/single-phase selection variation examples Phase Mode is "Single Phase") The provided rules always apply for single-phase ( power systems.
  • Page 716 Power quality measurement functions 1MRS758755 C Voltage swell set Voltage dip set Voltage Int set TRUE ST_A FALSE TRUE FALSE ST_B TRUE ST_C FALSE TRUE SWELLST FALSE TRUE DIPST FALSE TRUE INTST FALSE TRUE SWELLOPR FALSE TRUE DIPOPR FALSE TRUE INTOPR FALSE Figure 366: Concurrent dip and swell when Phase mode is "Single Phase"...
  • Page 717: Recorded Data

    1MRS758755 C Power quality measurement functions Voltage swell set Voltage dip set Voltage Int set TRUE ST_A FALSE TRUE FALSE ST_B TRUE ST_C FALSE TRUE SWELLST FALSE TRUE DIPST FALSE TRUE INTST FALSE TRUE SWELLOPR FALSE TRUE DIPOPR FALSE TRUE INTOPR FALSE A) Three phase mode...
  • Page 718 Power quality measurement functions 1MRS758755 C active voltage phase, and the minimum or maximum magnitude corresponding to swell or dip/interruption during variation is temporarily stored. If the minimum or maximum is found in tracking and a new magnitude is stored, also the inactive phase voltages are stored at the same moment, that is, the inactive phases are not magnitude-tracked.
  • Page 719: Application

    1MRS758755 C Power quality measurement functions Table 710: PHQVVR recording data bank parameters Parameter description Parameter name Event detection triggering time stamp Time Variation type Variation type Variation magnitude Ph A Variation Ph A Variation magnitude Ph A time stamp (max- Var Ph A rec time imum/minimum magnitude measuring time moment during variation)
  • Page 720 Power quality measurement functions 1MRS758755 C more than half of the nominal frequency period and less than one minute (European Standard EN 50160 and IEEE Std 1159-1995). These short-duration voltage variations are almost always caused by a fault condition. Depending on where the fault is located, it can cause either a temporary voltage rise (swell) or voltage drop (dip).
  • Page 721: Signals

    1MRS758755 C Power quality measurement functions in the European standard EN 50160. However, the power quality standards like the international standard IEC 61000-4-30 specify that the voltage variation event is characterized by its duration and magnitude. Furthermore, IEEE Std 1159-1995 gives the recommended practice for monitoring the electric power quality.
  • Page 722 Power quality measurement functions 1MRS758755 C 10.3.8 Settings 10.3.8.1 PHQVVR Group settings Table 714: PHQVVR Group settings (Basic) Parameter Values (Range) Unit Step Default Description Reference voltage 10.0...200.0 57.7 Reference supply voltage in % Voltage dip set 1 10.0...100.0 80.0 Dip limit 1 in % of reference voltage VVa dip time 1...
  • Page 723: Monitored Data

    1MRS758755 C Power quality measurement functions Table 716: PHQVVR Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Phase supervision 7=Ph A + B + C Monitored voltage 1=Ph A phase 2=Ph B 3=Ph A + B 4=Ph C 5=Ph A + C 6=Ph B + C 7=Ph A + B + C...
  • Page 724 Power quality measurement functions 1MRS758755 C Name Type Values (Range) Unit Description MOMDIPCNT INT32 0...2147483647 Momentary dip operation coun- TEMPDIPCNT INT32 0...2147483647 Temporary dip operation coun- MAXDURDIPCNT INT32 0...2147483647 Maximum dura- tion dip opera- tion counter MOMINTCNT INT32 0...2147483647 Momentary in- terruption opera- tion counter TEMPINTCNT...
  • Page 725 1MRS758755 C Power quality measurement functions Name Type Values (Range) Unit Description Variation Ph B FLOAT32 0.00...5.00 Variation magni- tude Phase B Var Ph B rec time Timestamp Variation magni- tude Phase B time stamp Variation Ph C FLOAT32 0.00...5.00 Variation magni- tude Phase C Var Ph C rec time Timestamp...
  • Page 726 Power quality measurement functions 1MRS758755 C Name Type Values (Range) Unit Description Variation Ph A FLOAT32 0.00...5.00 Variation magni- tude Phase A Var Ph A rec time Timestamp Variation magni- tude Phase A time stamp Variation Ph B FLOAT32 0.00...5.00 Variation magni- tude Phase B Var Ph B rec time Timestamp...
  • Page 727: Technical Data

    1MRS758755 C Power quality measurement functions Name Type Values (Range) Unit Description 4=Interruption 5=Swell + Int 6=Dip + Int 7=Swell+dip+Int Variation Ph A FLOAT32 0.00...5.00 Variation magni- tude Phase A Var Ph A rec time Timestamp Variation magni- tude Phase A time stamp Variation Ph B FLOAT32...
  • Page 728: Voltage Unbalance Vsqvub

    Power quality measurement functions 1MRS758755 C 10.3.10 Technical data Table 718: PHQVVR Technical data Characteristic Value Operation accuracy ±1.5 % of the set value or ±0.2 % of reference voltage Reset ratio Typically 0.96 (Swell), 1.04 (Dip, Interruption) 10.4 Voltage unbalance VSQVUB 10.4.1 Identification Function description...
  • Page 729: Operation Principle

    1MRS758755 C Power quality measurement functions The function contains a blocking functionality. It is possible to block a set of function outputs or the function itself, if desired. 10.4.4 Operation principle The function can be enabled and disabled with the Operation setting.
  • Page 730 Power quality measurement functions 1MRS758755 C The calculated three-second value and ten-minute value are available in the Monitored data view through the outputs 3S_MN_UNB and 10MN_MN_UNB. For VT connection = "Delta", the calculated zero-sequence voltage is Unb detection method = "Zero Seq" is always zero, hence, the setting not applicable in this VT configuration.
  • Page 731 1MRS758755 C Power quality measurement functions Table 719: Trigger mode observation times Trigger mode Observation time Single Only one period of observation time is acti- vated. Periodic The time gap between the two trigger sig- nals is seven days. Continuous The next period starts right after the previ- ous observation period is completed.
  • Page 732 Power quality measurement functions 1MRS758755 C OBS_PR_ACT Trigger mode - Single Obs period selection – 4 (7 days) TIme 7 days Trigger mode - Continuous Obs period selection – 4 (7 days) TIme Trigger mode - Continuous Obs period selection – 3 (1 day) TIme Trigger mode - Periodic...
  • Page 733: Application

    1MRS758755 C Power quality measurement functions The maximum three-second or ten-minute mean voltage unbalance is recorded during the active observation period. The observation period start time PR_STR_TIME , observation period end time PR_END_TIME , maximum voltage MAX_UNB_VAL and time of unbalance value during observation period active, MAX_UNB_TIME are available through the Monitored data view.
  • Page 734: Signals

    Power quality measurement functions 1MRS758755 C 10.4.5 Application Voltage unbalance is one of the basic power quality parameters. Ideally, in a three-phase or multiphase power system, the frequency and voltage magnitude of all the phases are equal and the phase displacement between any two consecutive phases is also equal.
  • Page 735: Settings

    1MRS758755 C Power quality measurement functions 10.4.6.1 VSQVUB Input signals Table 721: VSQVUB Input signals Name Type Default Description SIGNAL Phase A voltage SIGNAL Phase B voltage SIGNAL Phase C voltage SIGNAL Positive phase se- quence voltage SIGNAL Negative phase se- quence voltage SIGNAL Zero sequence volt-...
  • Page 736: Monitored Data

    Power quality measurement functions 1MRS758755 C Parameter Values (Range) Unit Step Default Description Trigger mode 3=Continuous Specifies the ob- 1=Single servation period 2=Periodic triggering mode 3=Continuous Percentile unbal- 1...100 The percent to ance which percentile value PCT_UNB_VAL is calculated Obs period selec- 5=User defined Observation period 1=1 Hour...
  • Page 737 1MRS758755 C Power quality measurement functions Name Type Values (Range) Unit Description of voltage unbal- ance PCT_UNB_VAL FLOAT32 0.00...150.00 Limit below which percentile unbalance of the values lie MAX_UNB_VAL FLOAT32 0.00...150.00 Maximum volt- age unbalance measured in the observation peri- MAX_UNB_TIME Timestamp Time stamp...
  • Page 738: Technical Data

    Power quality measurement functions 1MRS758755 C Name Type Values (Range) Unit Description Max unbalance FLOAT32 0.00...150.00 Maximum 3 sec- Volt onds unbalance voltage Time Max Unb Timestamp Time stamp of Volt maximum volt- age unbalance VSQVUB Enum Status 1=on 2=blocked 3=test 4=test/blocked 5=off...
  • Page 739: General Function Block Features

    1MRS758755 C General function block features General function block features 11.1 Definite time characteristics 11.1.1 Definite time operation Operating curve type setting is selected either The DT mode is enabled when the as "ANSI Def. Time" or "IEC Def. Time". In the DT mode, the OPERATE output of the Operate delay time .
  • Page 740 General function block features 1MRS758755 C Figure 374: Operation of the counter in drop-off Reset delay time setting and in case 2, the In case 1, the reset is delayed with the Reset delay time setting is set to zero. counter is reset immediately, because the REC615 &...
  • Page 741 1MRS758755 C General function block features Figure 375: Drop-off period is longer than the set Reset delay time When the drop-off period is longer than the set Reset delay time , as described Figure 375 , the input signal for the definite timer (here: timer input) is active, Start value .
  • Page 742 General function block features 1MRS758755 C Figure 376: Drop-off period is shorter than the set Reset delay time Reset delay time , as described When the drop-off period is shorter than the set Figure 376 , the input signal for the definite timer (here: timer input) is active, Start value .
  • Page 743: Current Based Inverse Definite Minimum Time Characteristics

    1MRS758755 C General function block features Figure 377: Operating effect of the BLOCK input when the selected blocking mode is "Freeze timer" If the BLOCK input is activated when the operate timer is running, as described in Figure 377 , the timer is frozen during the time BLOCK remains active. If the timer Reset delay time setting, the operate input is not active longer than specified by the Figure 375...
  • Page 744 General function block features 1MRS758755 C 11.2.1 IDMT curves for overcurrent protection In inverse-time modes, the operation time depends on the momentary value of the current: the higher the current, the faster the operation time. The operation time Start calculation or integration starts immediately when the current exceeds the set value and the START output is activated.
  • Page 745 1MRS758755 C General function block features Figure 378: Operation time curve based on the IDMT characteristic leveled out with the Minimum operate time setting is set to 1000 milliseconds ( the IDMT Sat point setting is set to maximum). REC615 & RER615 Technical Manual...
  • Page 746 General function block features 1MRS758755 C Figure 379: Operation time curve based on the IDMT characteristic leveled out with IDMT Sat point setting value “11” (the Minimum operate time setting is set to minimum). REC615 & RER615 Technical Manual...
  • Page 747 1MRS758755 C General function block features Figure 380: Example of how the inverse time characteristic is leveled out with currents over 50 x In and the Setting Start value setting “2.5 x In”. (the IDMT Sat point setting is set to maximum and the Minimum operate time setting is set to minimum).
  • Page 748 General function block features 1MRS758755 C       [ ] = ⋅        −    >     (Equation 77) t[s] Operate time in seconds measured current Start value I>...
  • Page 749 1MRS758755 C General function block features Figure 381: ANSI extremely inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 750 General function block features 1MRS758755 C Figure 382: ANSI very inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 751 1MRS758755 C General function block features Figure 383: ANSI normal inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 752 General function block features 1MRS758755 C Figure 384: ANSI moderately inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 753 1MRS758755 C General function block features Figure 385: ANSI long-time extremely inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 754 General function block features 1MRS758755 C Figure 386: ANSI long-time very inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 755 1MRS758755 C General function block features Figure 387: ANSI long-time inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 756 General function block features 1MRS758755 C Figure 388: IEC normal inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 757 1MRS758755 C General function block features Figure 389: IEC very inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 758 General function block features 1MRS758755 C Figure 390: IEC inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 759 1MRS758755 C General function block features Figure 391: IEC extremely inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 760 General function block features 1MRS758755 C Figure 392: IEC short-time inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 761 1MRS758755 C General function block features Figure 393: IEC long-time inverse-time characteristics 11.2.1.2 User-programmable inverse-time characteristics The user can define curves by entering parameters into the following standard formula: REC615 & RER615 Technical Manual...
  • Page 762 General function block features 1MRS758755 C       ⋅       −   >     (Equation 78) t[s] Operate time (in seconds) Curve parameter A Curve parameter B Curve parameter C Curve parameter E Measured current...
  • Page 763 1MRS758755 C General function block features Figure 394: RI-type inverse-time characteristics REC615 & RER615 Technical Manual...
  • Page 764: Recloser Inverse-Time Characteristics

    General function block features 1MRS758755 C Figure 395: RD-type inverse-time characteristics 11.2.2 Recloser inverse-time characteristics For inverse-time operation, standard recloser inverse-time characteristics are supported. The trip times for the curves are defined with the coefficients A, B, and C. The values of the coefficients can be calculated according to the formula: REC615 &...
  • Page 765 1MRS758755 C General function block features       ×      −    >     (Equation 81) t[s] Operate time in seconds measured current Start value I> Time multiplier Table 727: Curve parameters for recloser curves Curve name Recloser 1 (102)
  • Page 766 General function block features 1MRS758755 C Curve name Recloser A (101) Point to point data Recloser B (117) 4.22886 0.008933 1.7822 0.319885 Recloser C (133) 8.76047 0.029977 1.80788 0.380004 Recloser D (116) 5.23168 0.000462 2.17125 0.17205 Recloser E (132) 10.7656 0.004284 2.18261 0.249969...
  • Page 767 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 396: Recloser curve 1 (102) REC615 & RER615 Technical Manual...
  • Page 768 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 397: Recloser curve 2 (135) REC615 & RER615 Technical Manual...
  • Page 769 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 398: Recloser curve 3 (140) REC615 & RER615 Technical Manual...
  • Page 770 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.7 1.0 1.3 1.6 0.01 Current (multiples of start value) Figure 399: Recloser curve 4 (106) REC615 & RER615 Technical Manual...
  • Page 771 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.7 1.0 0.01 Current (multiples of start value) Figure 400: Recloser curve 5 (114) REC615 & RER615 Technical Manual...
  • Page 772 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.7 1.0 0.01 Current (multiples of start value) Figure 401: Recloser curve 6 (136) REC615 & RER615 Technical Manual...
  • Page 773 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 402: Recloser curve 7 (152) REC615 & RER615 Technical Manual...
  • Page 774 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 403: Recloser curve 8 (113) REC615 & RER615 Technical Manual...
  • Page 775 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.7 0.01 Current (multiples of start value) Figure 404: Recloser curve 8+ (111) REC615 & RER615 Technical Manual...
  • Page 776 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.7 1.0 1.3 2.0 4.0 0.01 Current (multiples of start value) Figure 405: Recloser curve 8* REC615 & RER615 Technical Manual...
  • Page 777 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 406: Recloser curve 9 (131) REC615 & RER615 Technical Manual...
  • Page 778 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 407: Recloser curve 11 (141) REC615 & RER615 Technical Manual...
  • Page 779 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.01 Current (multiples of start value) Figure 408: Recloser curve 13 (142) REC615 & RER615 Technical Manual...
  • Page 780 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 409: Recloser curve 14 (119) REC615 & RER615 Technical Manual...
  • Page 781 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 410: Recloser curve 15 (112) REC615 & RER615 Technical Manual...
  • Page 782 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.5 0.7 1.0 0.01 Current (multiples of start value) Figure 411: Recloser curve 16 (139) REC615 & RER615 Technical Manual...
  • Page 783 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.01 Current (multiples of start value) Figure 412: Recloser curve 17 (103) REC615 & RER615 Technical Manual...
  • Page 784 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 413: Recloser curve 18 (151) REC615 & RER615 Technical Manual...
  • Page 785 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 414: Recloser curve A (101) REC615 & RER615 Technical Manual...
  • Page 786 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 1.0 1.3 0.01 Current (multiples of start value) Figure 415: Recloser curve B (117) REC615 & RER615 Technical Manual...
  • Page 787 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 416: Recloser curve C (133) REC615 & RER615 Technical Manual...
  • Page 788 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.5 0.7 0.01 Current (multiples of start value) Figure 417: Recloser curve D (116) REC615 & RER615 Technical Manual...
  • Page 789 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.5 0.7 1.0 1.3 0.01 Current (multiples of start value) Figure 418: Recloser curve E (132) REC615 & RER615 Technical Manual...
  • Page 790 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.5 0.7 0.01 Current (multiples of start value) Figure 419: Recloser curve F (163) REC615 & RER615 Technical Manual...
  • Page 791 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 420: Recloser curve G (121) REC615 & RER615 Technical Manual...
  • Page 792 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 1.0 1.3 0.01 Current (multiples of start value) Figure 421: Recloser curve H (122) REC615 & RER615 Technical Manual...
  • Page 793 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.01 Current (multiples of start value) Figure 422: Recloser curve J (164) REC615 & RER615 Technical Manual...
  • Page 794 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.01 Current (multiples of start value) Figure 423: Recloser curve K-ground (165) REC615 & RER615 Technical Manual...
  • Page 795 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.5 0.7 0.01 Current (multiples of start value) Figure 424: Recloser curve K-phase (162) REC615 & RER615 Technical Manual...
  • Page 796 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.7 1.0 1.3 0.01 Current (multiples of start value) Figure 425: Recloser curve L (107) REC615 & RER615 Technical Manual...
  • Page 797 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.01 Current (multiples of start value) Figure 426: Recloser curve M (118) REC615 & RER615 Technical Manual...
  • Page 798 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 427: Recloser curve N (104) REC615 & RER615 Technical Manual...
  • Page 799 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.7 1.0 1.3 0.01 Current (multiples of start value) Figure 428: Recloser curve P (115) REC615 & RER615 Technical Manual...
  • Page 800 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.3 0.4 0.5 0.71.0 0.01 Current (multiples of start value) Figure 429: Recloser curve R (105) REC615 & RER615 Technical Manual...
  • Page 801 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 430: Recloser curve T (161) REC615 & RER615 Technical Manual...
  • Page 802 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 431: Recloser curve V (137) REC615 & RER615 Technical Manual...
  • Page 803 1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 432: Recloser curve W (138) REC615 & RER615 Technical Manual...
  • Page 804 General function block features 1MRS758755 C 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 433: Recloser curve Y (120) REC615 & RER615 Technical Manual...
  • Page 805: Reset In Inverse-Time Modes

    1MRS758755 C General function block features 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Current (multiples of start value) Figure 434: Recloser curve Z (134) REC615 & RER615 Technical Manual...
  • Page 806 General function block features 1MRS758755 C 11.2.3 Reset in inverse-time modes Type of reset curve The user can select the reset characteristics by using the setting. Table 728: Values for reset mode Setting name Possible values Type of reset curve 1=Immediate 2=Def time reset 3=Inverse reset...
  • Page 807 1MRS758755 C General function block features Measured current Start value I> Table 729: Coefficients for ANSI delayed inverse reset curves Curve name (1) ANSI Extremely Inverse 29.1 (2) ANSI Very Inverse 21.6 (3) ANSI Normal Inverse 0.46 (4) ANSI Moderately Inverse 4.85 (6) Long Time Extremely Inverse (7) Long Time Very Inverse...
  • Page 808 General function block features 1MRS758755 C Figure 435: ANSI extremely inverse reset time characteristics REC615 & RER615 Technical Manual...
  • Page 809 1MRS758755 C General function block features Figure 436: ANSI very inverse reset time characteristics REC615 & RER615 Technical Manual...
  • Page 810 General function block features 1MRS758755 C Figure 437: ANSI normal inverse reset time characteristics REC615 & RER615 Technical Manual...
  • Page 811 1MRS758755 C General function block features Figure 438: ANSI moderately inverse reset time characteristics REC615 & RER615 Technical Manual...
  • Page 812 General function block features 1MRS758755 C Figure 439: ANSI long-time extremely inverse reset time characteristics REC615 & RER615 Technical Manual...
  • Page 813 1MRS758755 C General function block features Figure 440: ANSI long-time very inverse reset time characteristics REC615 & RER615 Technical Manual...
  • Page 814 General function block features 1MRS758755 C Figure 441: ANSI long-time inverse reset time characteristics The delayed inverse-time reset is not available for IEC-type inverse time curves. User-programmable delayed inverse reset The user can define the delayed inverse reset time characteristics with the following Curve parameter D .
  • Page 815: Inverse-Timer Freezing

    1MRS758755 C General function block features       [ ] = ⋅        −    >     (Equation 83) t[s] Reset time (in seconds) Time multiplier Curve parameter D Measured current Start value...
  • Page 816 General function block features 1MRS758755 C The OPERATE output of the component is activated when the cumulative sum of the integrator calculating the overvoltage situation exceeds the value set by the inverse time mode. The set value depends on the selected curve type and the setting values Time multiplier setting.
  • Page 817 1MRS758755 C General function block features Figure 443: Operate time curve based on IDMT characteristic with Minimum operate time set to 1 second 11.3.1.1 Standard inverse-time characteristics for overvoltage protection The operate times for the standard overvoltage IDMT curves are defined with the coefficients A, B, C, D and E.
  • Page 818 General function block features 1MRS758755 C t [s] operate time in seconds measured voltage Start value U> the set value of the set value of Time multiplier Table 730: Curve coefficients for the standard overvoltage IDMT curves Curve name (17) Inverse Curve A 1 (18) Inverse Curve B 480 0.035 (19) Inverse Curve C 480...
  • Page 819 1MRS758755 C General function block features Figure 444: Inverse curve A characteristic of overvoltage protection REC615 & RER615 Technical Manual...
  • Page 820 General function block features 1MRS758755 C Figure 445: Inverse curve B characteristic of overvoltage protection REC615 & RER615 Technical Manual...
  • Page 821 1MRS758755 C General function block features Figure 446: Inverse curve C characteristic of overvoltage protection 11.3.1.2 User programmable inverse-time characteristics for overvoltage protection The user can define the curves by entering the parameters using the standard formula: REC615 & RER615 Technical Manual...
  • Page 822: Idmt Curves For Undervoltage Protection

    General function block features 1MRS758755 C ⋅       − >   × −   >   (Equation 85) t[s] operate time in seconds Curve parameter A the set value of Curve parameter B the set value of the set value of Curve parameter C...
  • Page 823 1MRS758755 C General function block features Minimum operate time setting defines the minimum operate time possible for the IDMT mode. For setting a value for this parameter, the user should carefully study the particular IDMT curve. 11.3.2.1 Standard inverse-time characteristics for undervoltage protection The operate times for the standard undervoltage IDMT curves are defined with the coefficients A, B, C, D and E.
  • Page 824 General function block features 1MRS758755 C Figure 447: : Inverse curve A characteristic of undervoltage protection REC615 & RER615 Technical Manual...
  • Page 825 1MRS758755 C General function block features Figure 448: Inverse curve B characteristic of undervoltage protection 11.3.2.2 User-programmable inverse-time characteristics for undervoltage protection The user can define curves by entering parameters into the standard formula: REC615 & RER615 Technical Manual...
  • Page 826: Frequency Measurement And Protection

    General function block features 1MRS758755 C ⋅       < −   × −   <   (Equation 87) t[s] operate time in seconds Curve parameter A the set value of Curve parameter B the set value of the set value of Curve parameter C...
  • Page 827: Measurement Modes

    1MRS758755 C General function block features of 160 ms is added to the transition from the bad quality. The bad quality of the signal can be due to restrictions like: • The source voltage is below 0.02 × U at F •...
  • Page 828: Calculated Measurements

    General function block features 1MRS758755 C Measurement mode setting The DFT measurement principle is selected with the using the value "DFT". In the DFT mode, the fundamental frequency component of the measured signal is numerically calculated from the samples. In some applications, for example, it can be difficult to accomplish sufficiently sensitive settings and accurate operation of the low stage, which may be due to a considerable amount of harmonics on the primary side currents.
  • Page 829 1MRS758755 C General function block features Sequence components The phase-sequence current components are calculated from the phase currents according to: (Equation 91) + ⋅ ⋅ (Equation 92) ⋅ + ⋅ (Equation 93) The phase-sequence voltage components are calculated from the phase-to-earth VT connection is selected as “Wye”...
  • Page 830 General function block features 1MRS758755 C − (Equation 101) If the U channel is not valid, it is assumed to be zero. The phase-to-phase voltages are calculated from the phase-to-earth voltages when VT connection is selected as "Wye" according to the equations. −...
  • Page 831: Requirements For Measurement Transformers

    1MRS758755 C Requirements for measurement transformers Requirements for measurement transformers 12.1 Current transformers 12.1.1 Current transformer requirements for overcurrent protection For reliable and correct operation of the overcurrent protection, the CT has to be chosen carefully. The distortion of the secondary current of a saturated CT may endanger the operation, selectivity, and co-ordination of protection.
  • Page 832 Requirements for measurement 1MRS758755 C transformers The CT accuracy primary limit current describes the highest fault current magnitude at which the CT fulfils the specified accuracy. Beyond this level, the secondary current of the CT is distorted and it might have severe effects on the performance of the protection relay.
  • Page 833 1MRS758755 C Requirements for measurement transformers Delay in operation caused by saturation of current transformers The saturation of CT may cause a delayed protection relay operation. To ensure the time selectivity, the delay must be taken into account when setting the operate times of successive protection relays.
  • Page 834 Requirements for measurement 1MRS758755 C transformers operate with the maximum load current. The settings for all three stages are as in Figure 449 For the application point of view, the suitable setting for instantaneous stage (I>>>) in this example is 3 500 A (5.83 × I ).
  • Page 835: Protection Relay's Physical Connections

    1MRS758755 C Protection relay's physical connections Protection relay's physical connections 13.1 Module slot numbering Figure 450: Module slot numbering X000 X100 X110 X120 X130 REC615 & RER615 Technical Manual...
  • Page 836: Binary And Analog Connections

    Protection relay's physical connections 1MRS758755 C 13.2 Protective earth connections Figure 451: The protective earth screw is located between connectors X100 and X110 The earth lead must be at least 6.0 mm and as short as possible. 13.3 Binary and analog connections All binary and analog connections are described in the product specific application engineering guides.
  • Page 837: Ethernet Rj-45 Front Connection

    1MRS758755 C Protection relay's physical connections Always install dust caps on unplugged fiber connectors. If contaminated, clean optical connectors only with fiber-optic cleaning products. 13.4.1 Ethernet RJ-45 front connection The protection relay is provided with an RJ-45 connector on the LHMI. The connector is intended for configuration and setting purposes.
  • Page 838: Serial Rear Connection

    Protection relay's physical connections 1MRS758755 C 13.4.3 EIA-232 serial rear connection The EIA-232 connection follows the TIA/EIA-232 standard and is intended to be used with a point-to-point connection. The connection supports hardware flow control ( RTS, CTS, DTR, DSR), full-duplex and half-duplex communication. 13.4.4 EIA-485 serial rear connection The EIA-485 communication module follows the TIA/EIA-485 standard and is...
  • Page 839: Rear Communication Modules

    1MRS758755 C Protection relay's physical connections Interfaces / Ethernet Serial Protocols 100BASE-TX 100BASE-FX LC EIA-232/EIA-485 Fibre-optic ST RJ-45 IEC 60870-5-104 ● ● ● = Supported 13.4.7 Rear communication modules COM0001 COM0002 COM0022 COM0023 COM0031 COM0032 COM0037 RJ-45 RJ-45+ RJ-45+ 3xRJ-45 2xLC+RJ-45+ 2xLC+RJ-45 RS232/485+...
  • Page 840 Protection relay's physical connections 1MRS758755 C Module ID RJ-45 EIA-485/ EIA-485 EIA-232 COM0031 COM0032 COM0037 Table 735: LED descriptions for COM0001 and COM0002 Connector Description X1/LAN link status and activity (RJ-45 and LC) COM2 2-wire/4-wire receive activity COM2 2-wire/4-wire transmit activity COM1 2-wire receive activity COM1 2-wire transmit activity IRIG-B signal activity...
  • Page 841 1MRS758755 C Protection relay's physical connections Table 737: LED descriptions for COM0031, COM0032 and COM0037 Connector Description X1/LAN1 link status and activity X2/LAN2 link status and activity X3/LAN3 link status and activity COM1 fiber-optic receive activity COM1 fiber-optic transmit activity 13.4.7.1 COM0022 and COM0023 jumper locations and connections The optional communication module COM0022 supports EIA-232/EIA-485 serial...
  • Page 842 Protection relay's physical connections 1MRS758755 C GUID-D4044F6B-2DA8-4C14-A491-4772BA108292 V1 EN Figure 453: Jumper connections on communication module COM0022 revisions A-F REC615 & RER615 Technical Manual...
  • Page 843 1MRS758755 C Protection relay's physical connections Figure 454: Jumper connections on communication module COM0022 revision G or later REC615 & RER615 Technical Manual...
  • Page 844 Protection relay's physical connections 1MRS758755 C 1 2 3 X 13 X 15 X 14 1 2 3 X 25 X 24 Figure 455: Jumper connections on communication module COM0023 revisions A-F REC615 & RER615 Technical Manual...
  • Page 845 1MRS758755 C Protection relay's physical connections 1 2 3 Figure 456: Jumper connections on communication module COM0023 revision G COM1 port connection type can be either EIA-232 or EIA-485. The type is selected by setting jumpers X19, X20, X21 and X26. The jumpers are set to EIA-232 by default. Table 740: EIA-232 and EIA-485 jumper connectors for COM1 Group Jumper connection...
  • Page 846 Protection relay's physical connections 1MRS758755 C Group Jumper connection Description EIA-232 To ensure fail-safe operation, the bus is to be biased at one end using the pull-up and pull-down resistors on the communication module. In the 4-wire connection, the pull-up and pull-down resistors are selected by setting jumpers X5, X6, X8, X9 to enabled position.
  • Page 847 1MRS758755 C Protection relay's physical connections Table 743: COM2 serial connection X5 EIA-485/ X12 Optical ST Group Jumper connection Description EIA-485 Optical ST EIA-485 Optical ST Table 744: 2-wire EIA-485 jumper connectors for COM2 Group Jumper connection Description A+ bias enabled A+ bias disabled B- bias enabled B- bias disabled...
  • Page 848 Protection relay's physical connections 1MRS758755 C Table 746: Optical ST connection (X12) Group Jumper connection Description Star topology Loop topology Idle state = Light on Idle state = Light off Table 747: EIA-232 connections for COM0022 and COM0023 (X6) EIA-232 AGND Table 748: EIA-485 connections for COM0022 and COM0023 (X6) 2-wire mode...
  • Page 849 1MRS758755 C Protection relay's physical connections 2-wire mode 4-wire mode AGND (isolated ground) IRIG-B + IRIG-B - GND (case) 13.4.7.2 COM0032 jumper locations and connections The optional communication modules include support for optical ST serial communication (X9 connector). The fibre-optic ST connection uses the COM1 port. Figure 457: Jumper connections on communication module COM0032 REC615 &...
  • Page 850 Protection relay's physical connections 1MRS758755 C Table 750: X9 Optical ST jumper connectors Group Jumper connection Description Star topology Loop topology Idle state = Light on Idle state = Light off REC615 & RER615 Technical Manual...
  • Page 851: Technical Data

    1MRS758755 C Technical data Technical data 14.1 Dimensions Table 751: Dimensions Description Value Width Frame 177 mm Case 164 mm Height Frame 177 mm (4U) Case 160 mm Depth 201 mm (153 + 48 mm) Weight Complete protection relay 4.1 kg Plug-in unit only 2.1 kg 14.2...
  • Page 852: Energizing Inputs Of Sim0001

    Technical data 1MRS758755 C 14.3 Energizing inputs Table 753: Energizing inputs Description Value Rated frequency 50/60 Hz Current inputs Rated current, I 0.2/1 A 1/5 A Thermal withstand capability: • Continuously 20 A • For 1 s 100 A 500 A Dynamic current withstand: •...
  • Page 853: Energizing Inputs Of Sim0002/Sim0904

    1MRS758755 C Technical data 14.5 Energizing inputs of SIM0002/SIM0904 Table 755: Energizing inputs of SIM0002/SIM0904 Description Value Current sensor in- Rated current voltage (in secon- 75 mV...9000 mV dary side) Continuous voltage withstand 125 V Input impedance at 50/60 Hz 2...3 MΩ...
  • Page 854: Signal Outputs And Irf Output

    Technical data 1MRS758755 C 14.7 Signal output with high make and carry Table 757: Signal output with high make and carry Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 15 A Make and carry for 0.5 s 30 A Breaking capacity when the control-circuit 1 A/0.25 A/0.15 A...
  • Page 855: Single-Pole Power Output Relays X100: Po1 And Po2

    1MRS758755 C Technical data 14.9 Double-pole power outputs with TCS function X100: PO3 and PO4 Table 759: Double-pole power outputs with TCS function X100: PO3 and PO4 Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 15 A Make and carry for 0.5 s 30 A...
  • Page 856: Serial Rear Interface

    Technical data 1MRS758755 C 14.11 Ethernet interfaces Table 761: Ethernet interfaces Ethernet Protocol Cable Data transfer rate interface Front TCP/IP Standard Ethernet CAT 5 cable 10 MBits/s with RJ-45 connector protocol Rear TCP/IP Shielded twisted pair CAT 5e cable 100 MBits/s with protocol RJ-45 connector or fibre-optic ca-...
  • Page 857: Irig-B

    1MRS758755 C Technical data Connector Fibre type Wave length Max. distance Permitted path attenuation 50/125 μm glass fibre core MM 62.5/125 or 820...900 nm 1 km <11 dB 50/125 μm glass fibre core 14.14 IRIG-B Table 764: IRIG-B Description Value IRIG time code format B004, B005 Isolation...
  • Page 858: Environmental Conditions

    Technical data 1MRS758755 C 14.16 Environmental conditions Table 766: Environmental conditions Description Value Operating temperature range -25...+55ºC (continuous) Short-time service temperature range -40...+85ºC (<16h) Relative humidity <93%, non-condensing Atmospheric pressure 86...106 kPa Altitude Up to 2000 m Transport and storage temperature range -40...+85ºC Degradation in MTBF and HMI performance outside the temperature range of -25...+55 ºC For relays with an LC communication interface the maximum operating temperature is +70 ºC...
  • Page 859: Protection Relay And Functionality Tests

    1MRS758755 C Protection relay and functionality tests Protection relay and functionality tests 15.1 Electromagnetic compatibility tests Table 767: Electromagnetic compatibility tests Description Type test value Reference 1 MHz/100 kHz burst disturb- IEC 61000-4-18 ance test IEC 60255-26 IEEE C37.90.1-2012 • Common mode 2.5 kV • Differential mode 2.5 kV...
  • Page 860 Protection relay and functionality tests 1MRS758755 C Description Type test value Reference Fast transient disturbance IEC 61000-4-4 test IEC 60255-26 IEEE C37.90.1-2012 • All ports 4 kV Surge immunity test IEC 61000-4-5 IEC 60255-26 • Communication 2 kV, line-to-earth • Other ports 4 kV, line-to-earth 2 kV, line-to-line Power frequency (50 Hz)
  • Page 861: Insulation Tests

    1MRS758755 C Protection relay and functionality tests Description Type test value Reference • Conducted 0.15...0.50 MHz <79 dB (µV) quasi peak <66 dB (µV) average 0.5...30 MHz <73 dB (µV) quasi peak <60 dB (µV) average • Radiated 30...230 MHz <40 dB (µV/m) quasi peak, measured at 10 m distance 230...1000 MHz <47 dB (µV/m) quasi peak,...
  • Page 862: Environmental Tests

    Protection relay and functionality tests 1MRS758755 C Description Requirement Reference IEC 60255-21-1 Shock and bump test Class 2 IEC 60068-2-27 (test Ea shock) IEC 60068-2-29 (test Eb bump) IEC 60255-21-2 Seismic test Class 2 IEC 60255-21-3 15.4 Environmental tests Table 770: Environmental tests Description Type test value Reference...
  • Page 863: Product Safety

    1MRS758755 C Protection relay and functionality tests 15.5 Product safety Table 771: Product safety Description Reference LV directive 2014/35/EU Standard EN 60255-27 EN 60255-1 15.6 EMC compliance Table 772: EMC compliance Description Reference EMC directive 2014/30/EU Standard EN 60255-26 REC615 & RER615 Technical Manual...
  • Page 864: Applicable Standards And Regulations

    Applicable standards and regulations 1MRS758755 C Applicable standards and regulations EU CE: • EMC Directive 2014/30/EU • Low-voltage directive 2014/35/EU • RoHS Directive 2011/65/EU • WEEE directive 2012/19/EU • EN 60255-1 • EN 60255-26 • EN 60255-27 • EN 61000-6-2 •...
  • Page 865: Glossary

    1MRS758755 C Glossary Glossary 100BASE-FX A physical medium defined in the IEEE 802.3 Ethernet standard for local area networks (LANs) that uses fiber optic cabling 100BASE-TX A physical medium defined in the IEEE 802.3 Ethernet standard for local area networks (LANs) that uses twisted-pair cabling category 5 or higher with RJ-45 connectors Alternating current 1.
  • Page 866 Glossary 1MRS758755 C Electromagnetic compatibility Ethernet A standard for connecting a family of frame-based computer networking technologies into a LAN FIFO First in, first out FPGA Field-programmable gate array File transfer protocol FTPS FTP Secure General fault criteria GOOSE Generic Object-Oriented Substation Event Global Positioning System Human-machine interface High-availability seamless redundancy...
  • Page 867 1MRS758755 C Glossary 2. Metering management system Modbus A serial communication protocol developed by the Modicon company in 1979. Originally used for communication in PLCs and RTU devices. Medium voltage Normally closed peer-to-peer 1. Personal computer 2. Polycarbonate PCM600 Protection and Control IED Manager Peak-to-peak 1.
  • Page 868 Glossary 1MRS758755 C Sampled measured values SNTP Simple Network Time Protocol SOTF Switch onto fault Connector type for glass fiber cable Software TCP/IP Transmission Control Protocol/Internet Protocol Trip-circuit supervision Type length value Underwriters Laboratories Coordinated universal time Voltage transformer Wide area network WHMI Web human-machine interface REC615 &...
  • Page 869 — ABB Distribution Solutions Digital Substation Products P.O. Box 699 FI-65101 VAASA, Finland Phone +358 10 22 11 www.abb.com/mediumvoltage www.abb.com/relion www.abb.com/substationautomation © Copyright 2023 ABB. All rights reserved.

This manual is also suitable for:

Relion rer615

Table of Contents