Page 1
GE Digital Energy SR350 revision: 2.0x 650 Markland Street Manual P/N: 1601-9094-AA Markham, Ontario GE publication code: GEK-113537J Canada L6C 0M1 TELEPHONE: Worldwide +1 905 927 7070 Europe/Middle East Africa +34 94 485 88 54 North America toll-free 1 800 547 8629...
Page 2
The contents of this manual are the property of GE Multilin Inc. This documentation is furnished on license and may not be reproduced in whole or in part without the permission of GE Multilin. The content of this manual is for informational use only and is subject to change without notice.
Page 3
Safety words and definitions The following symbols used in this document indicate the following conditions: Indicates a hazardous situation which, if not avoided, will result in death or serious Note injury. Indicates a hazardous situation which, if not avoided, could result in death or serious Note injury.
Page 6
Data Frame Format and Data Rate ................6 - 1 Data Packet Format........................ 6 - 1 Error Checking........................... 6 - 2 CRC-16 Algorithm ........................6 - 2 Timing............................6 - 3 350 supported functions ...................... 6 - 3 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 7
Performing Commands Using Function Code 10H..........9 - 8 10. USING THE MODBUS User Map......................10 - 1 MODBUS USER MAP 11. APPENDIX Warranty ..........................11 - 1 Change notes........................11 - 1 Manual Revision history ......................11 - 1 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 8
350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 9
Digital Energy SR350 Feeder Protection System Chapter 1: Communications interfaces Communications interfaces The 350 has three communications interfaces. These can be used simultaneously: • RS485 • • Ethernet 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–1...
Belden 9841 RS485 wire. Shielded wire should always be used to minimize noise. The shield should be connected to all of the 350 s as well as the master, then grounded at one location only. This keeps the ground potential at the same level for all of the devices on the serial link.
Modbus is a single master / multiple slave type of protocol suitable for a multi-drop configuration. The 350 is always a Modbus slave. It can not be programmed as a Modbus master. Computers or PLCs are commonly programmed as masters.
If a 350 Modbus slave device receives a transmission in which an error is indicated by the CRC-16 calculation, the slave device will not respond to the transmission. A CRC-16 error...
3.5 x 1 / 9600 x 10 = 3.65ms will cause the communication link to be reset. 350 supported functions The following functions are supported by the 350 : • FUNCTION CODE 03H - Read Setpoints •...
SETPOINTS > RELAY SETUP > COMMUNICATIONS > DNP PROTOCOL > DNP GENERAL To view the list of DNP Binary Inputs please refer to the Format Codes section - FC134B - of this Guide. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 2–5...
Maximum Application Layer Re-tries: ⊠None ⊠ None □Fixed at 3 □ Configurable □Configurable Requires Data Link Layer Confirmation: ⊠ Never □ Always □ Sometimes □ Configurable Requires Application Layer Confirmation: □ Never 2–6 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 17
Explanation of ‘Sometimes’: Object 12 points are mapped to Virtual Inputs and Commands (Force Coils). Both “Pulse On” and “Latch On” operations perform the same function in the 350 ; that is, the appropriate Virtual Input or Coil is put into the “On” state. The On/Off times and Count value are ignored.
00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.) Cold restarts are implemented the same as warm restarts – the 350 is not restarted, but the DNP process is restarted.
Page 23
The DNP Time Sync IIN Period setting determines how often the Need Time Internal Indication (IIN) bit is set by the 350 . Changing this time allows the 350 to indicate that a time synchroniztion command is necessary more or less often •...
Total_Number_of_Trips Requests for Object 20 (Binary Counters), Object 21 (Frozen Counters), and Object 22 (Counter Change Events) must be accepted. Function codes “Immediate Freeze”, “Freeze and Clear” etc. are accepted as well. 2–14 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
To view the list of Binary Inputs please refer to the Format Codes section - FC134B - of this Guide. Interoperability Physical layer Electrical interface ⊠ EIA RS-485 Number of loads for one protection equipment 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 2–15...
Page 27
Teleprotection signal transmitted □ <77> Teleprotection signal received □ <78> Zone 1 □ <79> Zone 2 □ <80> Zone 3 □ <81> Zone 4 □ <82> Zone 5 □ <83> Zone 6 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 2–17...
Page 28
Time synchronization Table 2-13: General commands in control direction Semantics □ <16> Auto-recloser on / off □ <17> Teleprotection on / off □ <18> Protection on / off □ <19> LED reset 2–18 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 29
Current L3 □ ⊠ Voltage L1-E □ ⊠ Voltage L2-E □ ⊠ Voltage L3-E □ ⊠ Active power P □ ⊠ Reactive power Q □ ⊠ Frequency f □ ⊠ Voltage L1-L2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 2–19...
<0..127>:= private range <128..129>:= compatible range <130..143>:= private range <144..145>:= compatible range <146..159>:= private range <160..161>:= compatible range <162..175>:= private range <176..177>:= compatible range <178..191>:= private range <192..193>:= compatible range <194..207>:= private range 2–20 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
<242..253>:= private range <254..255>:= compatible range The 350 relay is identified in this protocol as “overcurrent protection”, so it will use the Function Type <160> for all the digital and analogues points proposed by the standard and mapped in this profile. For the other data supported by the device, the customer will have the capability to use them by setting a number from the private range.
Identification Type 9 (ASDU 9) is selected, up to nine measurands can be sent in the IEC103 slave answer. For each measurand, all metering values that the 350 supports, are available in order to be mapped. There are 3 possible configurable ASDUS.
Command 16 Information Number < 0 – 255 > Command 16 Operation ON FC500 Command 16 Operation OFF FC500 The “Command Operations ON and OFF” reuse the DNP Binary Outputs 43189, 43190, … 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 2–23...
If the user sets a value other than 0 in the Synchronization Timeout setting, when this time expires without receiving a synchronization message, the Invalid bit will be set in the time stamp of a time-tagged message. It is necessary to configure other port settings: Baud Rate, etc. 2–24 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
SR350 Feeder Protection System Chapter 3: Ethernet interface Ethernet interface The Ethernet option for the 350 provides both a 1300 nm optical interface, and a 10/100 auto-negotiating copper interface. To select which interface is active, a MODBUS setpoint (see below) must be modified:...
Each copy of the frame is injected in a different direction of the ring. If any of the links between nodes is down, all nodes are still reachable. This topology forces every node in the 3–2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
PRP is designed to provide seamless recovery in case of a single failure in the network, by using a combination of LAN duplication and frame duplication technique. Identical frames are sent on two completely independent networks that connect source and destination, see next figure. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–3...
Page 38
IEC 61850-5 Clause 13 are still met. It is specified under Clause 13 (Message performance requirements) that messages of type 1A must meet the performance class P2/3, which is 3ms (See 3.7.1.1). Each device in the daisy chain forwards the message until it reaches the destination. 3–4 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
A daisy chain is an interconnection of devices where each device is connected in series to the next. When an Ethernet daisy-chain redundancy is selected, the 350 has two Ethernet ports and it is working as an Ethernet unmanaged switch. The two Ethernet ports are used for conncting each device to the ports of its two neighboring devices, see figure.
CHAPTER 3: ETHERNET INTERFACE MODBUS TCP/IP This section describes the procedure to read and write data in the 350 relay using MODBUS TCP protocol. The MODBUS communication allows the 350 relay to be connected to a supervisor program or any other device with a master MODBUS communication channel.
Page 41
A value of FF 00 hex requests the coil to be ON. A value of 00 00 requests it to be OFF. All other values are illegal and will not affect the coil. Force Virtual Inputs: 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–7...
Page 42
Force Virtual Input 7 State 4102 Force Virtual Input 8 State 4103 Force Virtual Input 9 State 4104 Force Virtual Input 10 State 4105 Force Virtual Input 11 State 4106 Force Virtual Input 12 State 4107 3–8 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 43
The normal response is an echo of the query, returned after the coil state has been forced. Field Name Slave Address Function Coil Address Hi Coil Address Lo Force Data Hi Force Data Lo 07H Read Exception Status Modbus Implementation: Read Exception Status 350 Implementation: Read Device Status 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–9...
Page 44
Here is an example of a request to preset two registers starting at 43851 to 00 01 and 00 00 hex, in slave device 254: Field Name Slave Address Function Starting Address Hi Starting Address Lo No. of Registers Hi No. of Registers Lo 3–10 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 45
This function is used to write settings in a specific settings group. Example: (In the example there is a write setting procedure in the Group 1 (00) , setting address 0x09C1 and 2 bytes of data with value 0x0001.) 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–11...
Exception and error responses One data frame of an asynchronous transmission to or from a 350 typically consists of 1 start bit, 8 data bits, and 1 stop bit. This produces a 10 bit data frame. This is important for transmission through modems at high bit rates.
If a 350 Modbus slave device receives a transmission in which an error is indicated by the CRC-16 calculation, the slave device will not respond to the transmission. A CRC-16 error...
Page 48
8. is j = 8? No: go to 5. Yes: go to 9. 9. i+1 —> i 10. is i = N? No: go to 3. Yes: go to 11. 11. A —> CRC 3–14 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
The following path is available using the keypad. For instructions on how to use the keypad, please refer to Chapter 3 - Working with the Keypad. PATH: SETPOINTS > RELAY SETUP > COMMUNICATIONS > DNP PROTOCOL > DNP GENERAL 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–15...
Received: 292 Received: 2048 Maximum Data Link Re-tries: Maximum Application Layer Re-tries: ⊠None ⊠ None □Fixed at 3 □ Configurable □Configurable Requires Data Link Layer Confirmation: ⊠ Never □ Always □ Sometimes 3–16 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 51
Explanation of ‘Sometimes’: Object 12 points are mapped to Virtual Inputs and Commands (Force Coils). Both “Pulse On” and “Latch On” operations perform the same function in the 350 ; that is, the appropriate Virtual Input or Coil is put into the “On” state. The On/Off times and Count value are ignored.
"Network-TCP" the DNP protocol can be used over TCP/IP channels 1 or 2. When this value is set to "Network-UDP" the DNP protocol can be used over UDP/IP on one channel only. 3–18 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.) Cold restarts are implemented the same as warm restarts – the 350 is not restarted, but the DNP process is restarted.
Page 57
Binary Output Point 0 ON Select entry Virtual Input 1 to 32 and Force from a list Coils Binary Output Point 0 OFF Select entry Virtual Input 1 to 32 and Force from a list Coils 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–23...
The DNP Time Sync IIN Period setting determines how often the Need Time Internal Indication (IIN) bit is set by the 350 . Changing this time allows the 350 to indicate that a time synchroniztion command is necessary more or less often •...
⊠ – used in the standard direction; □– not used. IEC 60870-5-104 Interoperability Document System or device: □ System definition. □ Controlling station definition (master). ⊠ Controlled station definition (slave). Application layer: Transmission mode for application data: 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–25...
Page 60
□ <40> := Packed output circuit information of protection equipment with time M_EP_TF_1 tag CP56Time2a Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set <30> to <40> are used. 3–26 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 61
□ <124> := Ack file, ack section F_AF_NA_1 □ <125> := Segment F_SG_NA_1 □ <126> := Directory (blank or X, available only in monitor [standard] direction) F_DR_TA_1 □ <127> := Query log - Request archive file F_SC_NB_1 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–27...
Page 64
⊠ Group 3. ⊠ Group 4. ⊠ Group 5. ⊠ Group 6. ⊠ Group 7. ⊠ Group 8. ⊠ Group 9. ⊠ Group 10. ⊠ Group 11. ⊠ Group 12. ⊠ Group 13. 3–30 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 65
□ Low limit for transmission of measured values. □ High limit for transmission of measured values. 20. Parameter activation: □ Activation/deactivation of persistent cyclic or periodic transmission of the addressed object. 21. Test procedure: 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 3–31...
Page 66
RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard. ⊠ Ethernet 802.3. □ Serial X.21 interface. □ Other selection(s) from RFC 2200 (list below if selected). 3–32 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
NOTE: active at a time. The 350 can be used as an IEC 60870-5-104 slave device connected to a maximum of two masters (usually either an RTU or a SCADA master station). Since the 350 maintains two sets of IEC 60870-5-104 data change buffers, no more than two masters should actively communicate with the 350 at one time.
M_ME_NB_1 analog data. Each setting represents the threshold value for each M_ME_NB_1 analog point. For example, to trigger spontaneous responses from the 350 when a current value changes by 15 A, the "Analog Point xx Deadband" setting should be set to 15. Note that these settings are the default values of the deadbands.
Digital Energy SR350 Feeder Protection System Chapter 4: SR3 IEC61850 GOOSE SR3 IEC61850 GOOSE Simplified SR3 IEC61850 GOOSE configuration 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–1...
Page 72
Simplified GOOSE configuration tool. • For those not familiar with the SR3’s IEC61850 implementation and/or the SR3 menus, the SR3 Simplified GOOSE message tool may save time and effort. SR3 GOOSE capabilities 4–2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
The total number of items that can be received is affected by the number of GOOSE NOTE: receives that have been configured, the type of data item, and by whether or not the quality is to be received with the item. Setting up the SR3 GOOSE Configurator 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–3...
Page 74
GOOSE message containing the status of Virtual Input 1 to the relay labeled 230. Upon reception of the message, relay 230 will use this Virtual Input status to control output relay number 3. 4–4 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Once an IP address and subnet mask have been configured within each relay, and the power cycled, the relays can be connected though a switch to the computer running the SR3 configuration software. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–5...
Launch the SR3 software, and using the help menu, ensure that the EnerVista SR3 setup software is version 1.41 or higher. If it is not, go to the GE Digital Energy website and download the latest copy of the EnerVista SR3 Setup software before proceeding. .
Page 77
SR3PC V1.40 and higher provides an offline project (site) management tool to organize the settings files into related groups. An offline menu is provided to manage (Create/ Edit/Remove) the offline site and settings files in addition to invoking the SGC tool. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–7...
Page 78
Simplified GOOSE Configurator: This selection launches the Simplified GOOSE Configurator for the given site branch. The feature will be grayed out if the highlighted item is not a site name or settings file within a site branch. Therefore 4–8 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 79
(in this case 228_GOOSE7) and location of the offline settings file. Once entered select Save, then OK. Note that the setting file name 228_GOOSE7 now appears under the site GOOSE. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–9...
Page 80
CHAPTER 4: SR3 IEC61850 GOOSE Repeat this process to enter the second setting file (using the name 230_GOOSE7), then again select Save and OK. Both settings files should now appear under the offline site GOOSE. 4–10 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 81
When we expand each device within the transmission column, we will see a tree similar to what we have in the offline tree. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–11...
Page 82
Also located at the bottom of the screen are the icons the restore Restore and Default: – Restore if selected will restore the screen to the last save position – Default if selected will set all the screen information to default values. 4–12 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 83
Before the final step of downloading the settings to each relay we need to enable the Virtual Input within 228_GOOSE7 such that we can change its status. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–13...
Page 84
Remote Input 1 to drive the status of Relay 3 as shown. Once these settings have been saved we can proceed to the next step: downloading the offline settings files to the relays. 4–14 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 85
Setting File to Device. This action will launch a second window showing all devices configured for the online window. To start the download process to Relay 228 click on Relay 228 such that it is highlighted, then select Send. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–15...
Page 86
230_GOOSE7 and relay 230. At this point the GOOSE messaging configuration is complete. To test the GOOSE messaging first, open the Virtual Input Commands window of Relay 228 and then under 230’s Actual Values branch open the Output Relays window. 4–16 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 87
Force Virtual Input number 1 of 228 on or off and monitor the status of Relay 3 in Relay 230. Note that the status of Relay 3 follows the status of Virtual Input 1 of Relay 228. This completes the exercise. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–17...
“3E” option and itself supports the configuration of both digital and analog items for transmission. This section of the Communications Guide deals with configuration of GOOSE messages via the SR3 IEC61850 Device Configurator. 4–18 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 89
Generic Input/Output logical nodes referred to as GGIO X where "X" represents an index (from 1 to 5 in the case of the SR3) used to differentiate between different GGIO logical nodes. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–19...
Page 90
The SR3 Contact I/O, Virtual Inputs and the status of Logic Elements are mapped into GGIO2, 3 and 4 respectively. Let’s take a moment to examine this further before moving on. We will take Virtual Inputs as our example: 4–20 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 91
GOOSE message in order to build the GOOSE message that this relay will eventually transmit. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–21...
SR3 configuration software. Please note that an IP address and subnet mask are not required for GOOSE messaging but are required to allow configuration of the relays via Ethernet. 4–22 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 93
Launch the EnerVista SR3 Setup software and using the Help menu, ensure that the software is version 1.41 or higher. If it is not, go to the GE Digital Energy website and download the latest copy of the EnerVista SR3 Setup software before proceeding.
Configure both SR3 relays into the SR3 software application using the following procedure 1.1. Launch the SR3 software and select Device Setup. 1.2. Select Add Site. 1.3. Enter an optional site name. 1.4. Select Add Device. 4–24 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 95
SR3 was not connected to the network correctly, or the IP address, subnet mask and/or the ModBus Slave address entered in the software does not match the relay. Troubleshoot accordingly. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–25...
Page 96
GOOSE message transmission of both relays to Advanced as follows: 1.11. For relay 228, open Setpoints > Communications > GOOSE Configuration > Transmission. 1.12. Set the GOOSE Type to Advanced. 1.13. Select Save. 1.14. Repeat for Relay 254. 4–26 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 97
SR3 GOOSE CONFIGURATION VIA THE IEC 61850 CONFIGURATOR Configure relay 228’s GOOSE transmission The following steps are used to configure relay 228’s transmission: 2.1. Right mouse Click on relay 228, then select IEC61850 Device Configurator to launch the software 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–27...
Page 98
“one” by a left mouse double-click on the cell to the left of the cell labeled "IEC Name" and enter “one”. 2.3. Select the GOOSE transmission tab to configure the actual GOOSE transmission name and data within the transmission that will be sent. 4–28 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 99
Sixty four of these data values can be dragged into the data settlements work area to form the GOOSE message that will be transmitted. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–29...
Page 100
Given that the SR3 software exports only the on-line CID file, the power to relay 228 must first be cycled before the file can be exported. 4–30 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 101
Enter a name for the CID file that will be exported (in our example lab, we will use the name 228_Lab_1), then select Save. Once saved, a confirmation message will appear on the computer screen. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–31...
Page 102
To load the structure of TX1 into relay 254, select ADD IED, then select the name of the file containing relay 228’s CID file which, in our example, is 228_Lab_1.CID, then select Open. 4–32 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 103
SR3 GOOSE CONFIGURATION VIA THE IEC 61850 CONFIGURATOR 3.5. Relay 228’s GOOSE message appears as an icon. This process can be repeated to load the structures of up to seven additional GOOSE messages into relay 254. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–33...
Page 104
Once the CID file is modified, relay 254’s power must be cycled to load the new CID file NOTE: settings for the GOOSE message into the on-line area to take effect. Testing. To test the operation, proceed as follows: 4–34 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 105
Virtual Input 1 of relay 228 is forced to a logic 1 or a logic 0, the status of Remote Input 1 of relay 254 changes to the same state, proving that the GOOSE transmission and reception were configured correctly. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–35...
CHAPTER 4: SR3 IEC61850 GOOSE This completes the exercise. SR3 IEC 61850 GOOSE details The 350 firmware supports IEC61850 GOOSE communications on the optional communications daughter board. Portions of the IEC61850 standard not pertaining to GOOSE, are not implemented in the 350 relay.
(one level of nesting) and all the standard data types. GOOSE settings changes will take effect only after the 350 relay is re-booted. One setting is available to Enable/Disable both Transmission and Reception. It is possible to change this setting from the Front Panel of the relay.
SR3 IEC 61850 GOOSE DETAILS GOOSE transmission The 350 firmware supports one transmission dataset. All elements in the transmit dataset must be Booleans values. The user can define the number of items in the transmit data setup, to a maximum of 32.
Page 110
All the elements in a dataset can be mapped by the user to any available digital value within the 350 relay, including: • Alarm elements • Protection elements (Pickup, Dropout and Operate of all available protection elements) 4–40 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Remote Devices. Instead, it is simpler to deal with Remote GOOSE messages. The 350 firmware is able to receive up to a total of 8 remote GOOSE messages transmitted from up to a maximum of 8 remote devices.
Page 112
If a GOOSE message is received, and its header has not been configured for reception, the firmware ignores the message. It is possible to see this GOOSE status information from the 350 relay front panel. 4–42 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Figure 4-3: EnerVista SR3 GOOSE Status page GOOSE Rx headers The 350 firmware supports GOOSE messages that contain up to one level of nesting, and that are capable of mapping only digital values to the remote inputs. The 350 firmware maintains the format of GOOSE messages that can be received in MODBUS registers.
The screen then refreshes, reflecting the saved data. Clicking on NO will do nothing and the user can make changes on the screen (shown below). The RX GOOSE message data types that are handled by the software, are: 4–44 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
The firmware allows the user to assign a string name to each of the 32 remote inputs, and allows the string name assigned to each remote input to be between 1 and 32 characters. 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–45...
In the 350 there are many different settings where it is possible to select between a Contact Input (1 to 8 ), a Virtual Input (1 to 32 ) or a Logic Element (1 to 8 ). In all of these settings it is also possible to select Remote Input (1-32 ) if the GOOSE feature is enabled on the relay.
PIOC (Instantaneous overcurrent) Table 4-4: phsPIOC to 2 phase instantaneous overcurrent PIOC class Attribute Name Attr. Type Explanation Notes PIOC Instantaneous overcurrent Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health 4–48 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 119
Table 4-7: hsePIOC to 2 sensitive ground instantaneous overcurrent PIOC class Attribute Name Attr. Type Explanation Notes PIOC Instantaneous overcurrent Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status Information 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–49...
Page 120
Table 4-10: phsPTOC to 1 phase time overcurrent PTOC class Attribute Name Attr. Type Explanation Notes PTOC Time overcurrent Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status Information 4–50 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 121
Time overcurrent Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status Information ACD_1 Start TOC PKP ACT_1 Operate TOC OP ACT_2 Block TOC BLK 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–51...
Page 122
PTOV Overvoltage Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status Information ACD_2 Start TOV PKP ACT_2 Operate TOV OP ACT_2 Block TOV BLK 4–52 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 123
PTUV Undervoltage Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status Information ACD_0 Start TUV PKP ACT_0 Operate TUV OP ACT_2 Block TUV BLK 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–53...
Page 124
Thermal Overload Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status Information ACD_2 Start TTR PKP ACT_2 Operate TTR OP ACT_2 Block TTR BLK 4–54 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status Information ACD_0 Direction Fixed to Unknown Value ACT_0 Operate Phase Dir OP ACT_2 Block Phase Dir Block RREC (Autoreclosing) 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–55...
Generic process I/O Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate Status information Ind1 SPS_0 General Indication Contact Input 1 ( binary input ) 4–56 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 127
SPS_0 General Indication Virtual Input 2 ( binary input ) Ind32 SPS_0 General Indication Virtual Input 32 ( binary input ) Controls SPCSO1 SPC_0 Single point Virtual Input 1 controllable status output 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–57...
Page 128
Ind16 SPS_0 General Indication Logic Element 16 ( binary input ) Table 4-31: GGIO5 to Remote Inputs ( GOOSE ) GGIO class Attribute Name Attr. Type Explanation Notes GGIO Generic process I/O 4–58 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Table 4-33: MSQI (Sequence and imbalance) MSQI class Attribute Name Attr. Type Explanation M/O Notes MSQI Measurement Data Common Logical Node Information INC_0 Mode INS_0 Behaviour Health INS_1 Health NamPlt LPL_1 Name plate 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–59...
SPS class (Single point status) SPS_0 Attribute Name Attribute Type TrgOp Value/Value Range M/O/C DataAttribute status StVal Boolean dchg BVstring13 qchg Utctime Configuration, description and extension Vstring255 SPS_1 Attribute Name Attribute Type TrgOp Value/Value Range M/O/C 4–60 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 131
ACT class (Protection activation information) ACT_0 Attribute Name Attribute Type TrgOp Value/Value Range M/O/C DataAttribute Control and status General Boolean Dchg PhsA Boolean Dchg PhsB Boolean Dchg PhsC Boolean Dchg Bvstring13 Qchg 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–61...
Page 132
| forward | backward GC_2(3) Bvstring13 qchg Utctime Configuration, description and extension Vstring255 ACD_1 Attribute Attribute Type FC TrgOp Value/Value Range M/O/C Name DataAttribute Control and status General Boolean dchg 4–62 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Measured attributes instCVal FloatAnalogueValue MX ------ FLOAT32 GC_1 FloatAnalogueValue MX dchg FLOAT32 GC_1 range ENUMERATED(Byte) MX dchg BVstring13 qchg Utctime Configuration, description and extension Units Unit SIUnit ENUMERATED(Byte) Multiplier ENUMERATED(Byte) INT32U zeroDb INT32 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–63...
Page 134
RangeConfig Vstring255 Table 4-41: Phase-to-ground related measured values of a three phase system (WYE) WYE class WYE_0 Attribute Name Attribute Type TrgOp Value/Value Range M/O/C Data phsA CMV_0 GC_1 phsB CMV_0 GC_1 4–64 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Pos-neg-zero | dir-quad-zero O Configuration, description and extension Vstring255 Common data class specifications for controllable status information Table 4-44: Controllable single point (SPC) SPC class SPC_0 Attribute Name Attribute Type TrgOp Value/Value Range M/O/C 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–65...
Page 136
Vstring255 Table 4-46: Controllable integer status (INC) INC class (Controllable integer status) INC_0 Attribute Name Attribute Type TrgOp Value/Value Range M/O/C DataAttribute status StVal Enum dcgh On,blocked, test, test/ blocked,Off BVstring13 qchg 4–66 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Value/Value Range M/O/C DataAttribute Control and status Vendor Vstring255 SwRev Vstring255 Vstring255 configRev Vstring255 AC_LN0_M LPL_1 Attribute Name Attribute Type TrgOp Value/Value Range M/O/C DataAttribute Control and status Vendor Vstring255 SwRev Vstring255 Vstring255 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 4–67...
Page 138
IEC 61850 COMMON DATA CLASS CHAPTER 4: SR3 IEC61850 GOOSE 4–68 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
EventsSDK – Software Development KitCTT – Compliance Test Tool OPC–UA Architecture The OPC communication is done through Client-Server architecture. In the case of the 350 relay, the relay is implemented as the Server. The parts that are being supported are: •...
The OPC-UA server has implemented the following Analog, Digital, Input, Logic and Command points, as shown in the tables. Table 5-1: Analog points Data Description Real Power (kW) Reactive Power (kVAr) Apparent Power (kVA) Power Factor Freq Frequency (Hz) 5–2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 141
Phase B IOC 1 PKP PIOC_1_phC_PKP Phase C IOC 1 PKP PIOC_1_OP Phase IOC 1 OP PIOC_1_phA_OP Phase A IOC 1 OP PIOC_1_phB_OP Phase B IOC 1 OP PIOC_1_phC_OP Phase C IOC 1 OP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 5–3...
Page 143
UF_1_BLK Under Frequency 1 BLK UF_2_PKP Under Frequency 2 PKP UF_2_OP Under Frequency 2 OP UF_2_BLK Under Frequency 2 BLK Therm_PKP Thermal Model PKP Therm_OP Thermal Model OP Therm_BLK Thermal Model BLK 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 5–5...
Page 146
Contact Output 5 CO_6 Contact Output 6 CO_7 Contact Output 7 Table 5-5: Logic points Data Description Logic_1 Logic Element 1 Logic_2 Logic Element 2 Logic_3 Logic Element 3 Logic_4 Logic Element 4 5–8 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 147
Logic Element 11 Logic_12 Logic Element 12 Logic_13 Logic Element 13 Logic_14 Logic Element 14 Logic_15 Logic Element 15 Logic_16 Logic Element 16 Table 5-6: Commands Data Description Reset Reset Open Open Close Close 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 5–9...
Page 148
OPC–UA POINT LISTS CHAPTER 5: OPC–UA COMMUNICATION STANDARD 5–10 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Chapter 6: USB interface USB interface The USB inferface supports only the Modbus protocol. For information on using the USB port on the 350 relay, please refer to section 3 of the 350 Instruction Manual. MODBUS Protocol The 350 implements a subset of the Modicon Modbus RTU serial communication standard.
If a 350 Modbus slave device receives a transmission in which an error is indicated by the CRC-16 calculation, the slave device will not respond to the transmission. A CRC-16 error...
3.5 x 1 / 9600 x 10 = 3.65ms will cause the communication link to be reset. 350 supported functions The following functions are supported by the 350 : • FUNCTION CODE 03H - Read Setpoints •...
Page 152
MODBUS PROTOCOL CHAPTER 6: USB INTERFACE 6–4 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Power profile (IEEE Std C37.238™ 2011) requires that the relay selects as a grandmaster: • only power profile compliant clocks that the delivered time has a worst-case error of ±1 μs • 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 7–1...
Page 154
The setting applies to all of the relay’s PTP-capable ports PTP EPOCH Range: UTC since 1995, UTC since 1900, UTC since 1970, TAI since 1970 Default: UTC since 1995 The setting selects the origin of the time scale. 7–2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 155
Comm Boot Code Rev 0xFFFF 30068 FPGA Rev 0xFFFF 30135 Main Boot Code Date 30141 Main Boot Code Time 30145 Comm Boot Code Date 30151 Comm Boot Code Time REAL-TIME CLOCK 30223 Weekday None 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–1...
Page 156
°Lag 30352 Vaux Angle ° 30353 Vab Angle ° 30354 Vbc Angle ° 30355 Vca Angle ° VOLTAGE METERING 30358 65535 30359 65535 30360 65535 30361 Average Line Voltage 65535 30362 65535 8–2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 157
User Map Value 1 0xFFFF 30525 User Map Value 2 0xFFFF 30526 User Map Value 3 0xFFFF 30527 User Map Value 4 0xFFFF 30528 User Map Value 5 0xFFFF 30529 User Map Value 6 0xFFFF 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–3...
Page 158
User Map Value 47 0xFFFF 30571 User Map Value 48 0xFFFF 30572 User Map Value 49 0xFFFF 30573 User Map Value 50 0xFFFF 30574 User Map Value 51 0xFFFF 30575 User Map Value 52 0xFFFF 8–4 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 159
User Map Value 93 0xFFFF 30617 User Map Value 94 0xFFFF 30618 User Map Value 95 0xFFFF 30619 User Map Value 96 0xFFFF 30620 User Map Value 97 0xFFFF 30621 User Map Value 98 0xFFFF 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–5...
Page 166
Trip Phase C Status 2 65535 FC134 PHASE TOC1 TRIP STATUS 31527 Trip Phase A Status 3 65535 FC134 31528 Trip Phase B Status 3 65535 FC134 31529 Trip Phase C Status 3 65535 FC134 8–12 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 167
PRP HSR Version 32149 Independent Version 32157 PRP total sent Port A 0xFFFFFFFF 32159 PRP total sent Port B 0xFFFFFFFF 32161 PRP total errors Port A 0xFFFFFFFF 32163 PRP total errors Port B 0xFFFFFFFF 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–13...
Page 178
42294 Flex Curve A 2.50 X PU 65535 42295 Flex Curve A 2.60 X PU 65535 42296 Flex Curve A 2.70 X PU 65535 42297 Flex Curve A 2.80 X PU 65535 8–24 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 179
42340 Flex Curve A 11.50 X PU 65535 42341 Flex Curve A 12.00 X PU 65535 42342 Flex Curve A 12.50 X PU 65535 42343 Flex Curve A 13.00 X PU 65535 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–25...
Page 180
42407 Flex Curve B 3.60 X PU 65535 42408 Flex Curve B 3.70 X PU 65535 42409 Flex Curve B 3.80 X PU 65535 42410 Flex Curve B 3.90 X PU 65535 8–26 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 181
42453 Flex Curve B 17.00 X PU 65535 42454 Flex Curve B 17.50 X PU 65535 42455 Flex Curve B 18.00 X PU 65535 42456 Flex Curve B 18.50 X PU 65535 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–27...
Page 182
Sensitive Ground Time OC Curve 42550 Sensitive Ground Time OC Mult 2000 42551 Sensitive Ground Time OC Reset 42552 Neutral Directional Function FC207 42553 NTRL DIR POLARZNG 42554 Neutral Directional MTA °Lead 8–28 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 186
Virtual Input Name 18 Virtual IN 43046 Virtual Input Name 19 Virtual IN 43055 Virtual Input Name 20 Virtual IN 43064 Virtual Input Name 21 Virtual IN 43073 Virtual Input Name 22 Virtual IN 8–32 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 187
43495 LE 5 Trigger 2 0xFFFF FC134C 0 43496 LE 5 Trigger 3 0xFFFF FC134C 0 43497 LE 5 Block 1 0xFFFF FC134C 0 43498 LE 5 Block 2 0xFFFF FC134C 0 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–33...
Page 189
Binary Input Point 24 Entry 0xFFFF FC134B 0 43903 Binary Input Point 25 Entry 0xFFFF FC134B 0 43904 Binary Input Point 26 Entry 0xFFFF FC134B 0 43905 Binary Input Point 27 Entry 0xFFFF FC134B 0 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–35...
Page 190
Analog Input Point 1 Scale Factor 43948 Analog Input Point 1 Deadband 100000000 30000 43950 Analog Input Point 2 Entry 43951 Analog Input Point 2 Scale Factor 43952 Analog Input Point 2 Deadband 100000000 30000 8–36 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 191
Analog Input Point 16 Deadband 100000000 30000 44010 Analog Input Point 17 Entry 44011 Analog Input Point 17 Scale Factor 44012 Analog Input Point 17 Deadband 100000000 30000 44014 Analog Input Point 18 Entry 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–37...
Page 192
Analog Input Point 31 Deadband 100000000 30000 DNP / IEC60870-5-104 BINARY OUTPUTS 44070 Binary Output Point 0 ON 44071 Binary Output Point 0 OFF 44072 Binary Output Point 1 ON 44073 Binary Output Point 1 OFF 8–38 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 195
Binary In Point 0 Entry Information Number 44223 107E Binary In Point 1 Entry Function Type 44224 107F Binary In Point 1 Entry Information Number 44225 1080 Binary In Point 2 Entry Function Type 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–41...
Page 196
Binary In Point 14 Entry Information Number 44251 109A Binary In Point 15 Entry Function Type 44252 109B Binary In Point 15 Entry Information Number 44253 109C Binary In Point 16 Entry Function Type 8–42 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 197
Binary In Point 28 Entry Information Number 44279 10B6 Binary In Point 29 Entry Function Type 44280 10B7 Binary In Point 29 Entry Information Number 44281 10B8 Binary In Point 30 Entry Function Type 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–43...
Page 198
Binary In Point 42 Entry Information Number 44307 10D2 Binary In Point 43 Entry Function Type 44308 10D3 Binary In Point 43 Entry Information Number 44309 10D4 Binary In Point 44 Entry Function Type 8–44 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 199
Binary In Point 56 Entry Information Number 44335 10EE Binary In Point 57 Entry Function Type 44336 10EF Binary In Point 57 Entry Information Number 44337 10F0 Binary In Point 58 Entry Function Type 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–45...
Page 200
Binary Out Point 6 Entry Function Type 44362 1109 Binary Out Point 6 Entry Information Number 44363 110A Binary Out Point 7 Entry Function Type 44364 110B Binary Out Point 7 Entry Information Number 8–46 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 201
103 First ASDU Second Analogue 0xFFFF Factor 44393 1128 103 First ASDU Second Analogue 0xFFFF Offset 44394 1129 103 First ASDU Third Analogue Entry 0 44395 112A 103 First ASDU Third Analogue 0xFFFF Factor 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–47...
Page 202
103 Second ASDU Second Analogue Entry 44423 1146 103 Second ASDU Second Analogue 0xFFFF Factor 44424 1147 103 Second ASDU Second Analogue 0xFFFF Offset 44425 1148 103 Second ASDU Third Analogue Entry 8–48 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 203
103 Third ASDU First Analogue 0xFFFF Offset 44453 1164 103 Third ASDU Second Analogue Entry 44454 1165 103 Third ASDU Second Analogue 0xFFFF Factor 44455 1166 103 Third ASDU Second Analogue 0xFFFF Offset 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–49...
Page 204
103 Fourth ASDU First Analogue 0xFFFF Factor 44483 1182 103 Fourth ASDU First Analogue 0xFFFF Offset 44484 1183 103 Fourth ASDU Second Analogue Entry 44485 1184 103 Fourth ASDU Second Analogue 0xFFFF Factor 8–50 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 205
Sec Passcode Master 5 44541 11BC Sec Passcode Local SP 1 44542 11BD Sec Passcode Local SP 2 44543 11BE Sec Passcode Local SP 3 44544 11BF Sec Passcode Local SP 4 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–51...
Page 206
Virtual Input 9 Function FC126 44589 11EC Virtual Input 10 Function FC126 44590 11ED Virtual Input 11 Function FC126 44591 11EE Virtual Input 12 Function FC126 44592 11EF Virtual Input 13 Function FC126 8–52 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 207
Virtual Input 22 Type FC199 44634 1219 Virtual Input 23 Type FC199 44635 121A Virtual Input 24 Type FC199 44636 121B Virtual Input 25 Type FC199 44637 121C Virtual Input 26 Type FC199 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–53...
Page 211
RI 2 45604 15E3 RI 2 GOOSE SOURCE 0x80 FC219 45605 15E4 RI 2 ITEM SOURCE 0xFFFF FC217 45606 15E5 RI 2 ITEM MASK 0xFFFF FC218 45607 15E6 RI 2 DFLT STATE FC220 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–57...
Page 212
RI 11 GOOSE SOURCE 0x80 45794 16A1 RI 11 ITEM SOURCE 0xFFFF FC217 45795 16A2 RI 11 ITEM MASK 0xFFFF FC218 45796 16A3 RI 11 DFLT STATE FC220 45798 16A5 RI 12 NAME RI 12 8–58 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 213
RI 20 ITEM SOURCE 0xFFFF FC217 45984 175F RI 20 ITEM MASK 0xFFFF FC218 45985 1760 RI 20 DFLT STATE FC220 45987 1762 RI 21 NAME RI 21 46003 1772 RI 21 GOOSE SOURCE 0x80 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–59...
Page 214
RI 29 ITEM MASK 0xFFFF FC218 46174 181D RI 29 DFLT STATE FC220 46176 181F RI 30 NAME RI 30 46192 182F RI 30 GOOSE SOURCE 0x80 46193 1830 RI 30 ITEM SOURCE 0xFFFF FC217 8–60 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 215
LE 12 Trigger 3 0xFFFF FC134C 0 46386 18F1 LE 12 Block 1 0xFFFF FC134C 0 46387 18F2 LE 12 Block 2 0xFFFF FC134C 0 46388 18F3 LE 12 Block 3 0xFFFF FC134C 0 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–61...
Page 216
1A51 Dead bus voltage level 46739 1A52 Live bus voltage level 46740 1A53 Dead line voltage level 46741 1A54 Live line voltage level 46742 1A55 Voltage Difference 46743 1A56 Angle Difference º 8–62 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 217
Places Example: -12.34 stored as -1234 i.e. 64302 unsigned 32 bits Unsigned Long Value 1st 16 bits High Order Word of Long Value 2nd 16 bits Low Order Word of Long Value 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–63...
Page 218
High Order Word of Long Value 2nd 16 bits Low Order Word of Long Value Example: -12345.6 stored as -123456 i.e. 1st word: FFFE hex, 2nd word: 1DC0 hex unsigned 16 bits Hardware Revision Prototype 8–64 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 219
Moderately Inverse Definite Time IEC Curve A IEC Curve B IEC Curve C Flex Curve A Flex Curve B IAC Extr. Inverse IAC Very Inverse IAC Inverse IAC Short Inverse IEC Short Inverse 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–65...
Page 223
0xCA Logic Element 11 0xCB Logic Element 12 0xCC Logic Element 13 0xCD Logic Element 14 0xCE Logic Element 15 0xCF Logic Element 16 0x1C0 Remote Input 1 0x1C1 Remote Input 2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–69...
Page 224
All Three unsigned 16 bits Phase UV Curve Definite Time Inverse Time unsigned 16 bits Transient Recorder Buffer 1 x 192 3 x 64 6 x 32 unsigned 16 bits Directional Polarizing Voltage 8–70 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 225
Voltage Transformer Connection Type Delta FC107 unsigned 16 bits Supply Frequency FC108 unsigned 16 bits 61850 Status Not Ready Ready Default CID FC109 unsigned 16 bits Flex Logic Status FC111 unsigned 16 bits Trip Relays 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–71...
Page 226
Comm Fail Mode FC133 unsigned 16 bits Cause of Waveform Trigger None Command 0x00C0 VO 1 0x00C1 VO 2 0x00C2 VO 3 0x00C3 VO 4 0x00C4 VO 5 0x00C5 VO 6 0x00C6 VO 7 8–72 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 227
Comm. Alert 2 Comm. Alert 3 Ethernet Link Fail High ENET Traffic Ambient Temp. >80C Trace Mem. Trigger Rx Goose 1 ON Rx Goose 1 OFF Rx Goose 2 ON Rx Goose 2 OFF 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–73...
Page 228
Virtual IN 9 On 0x0089 Virtual IN 10 On 0x008A Virtual IN 11 On 0x008B Virtual IN 12 On 0x008C Virtual IN 13 On 0x008D Virtual IN 14 On 0x008E Virtual IN 15 On 8–74 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 229
Virtual IN 24 Off 0x00B8 Virtual IN 25 Off 0x00B9 Virtual IN 26 Off 0x00BA Virtual IN 27 Off 0x00BB Virtual IN 28 Off 0x00BC Virtual IN 29 Off 0x00BD Virtual IN 30 Off 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–75...
Page 230
Remote IN 7 Off 0x01E7 Remote IN 8 Off 0x01E8 Remote IN 9 Off 0x01E9 Remote IN 10 Off 0x01EA Remote IN 11 Off 0x01EB Remote IN 12 Off 0x01EC Remote IN 13 Off 8–76 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 231
LE 4 Trip PKP 0x8582 LE 4 Trip OP 0x8584 LE 4 Trip DPO 0x85C1 LE 5 Trip PKP 0x85C2 LE 5 Trip OP 0x85C4 LE 5 Trip DPO 0x8601 LE 6 Trip PKP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–77...
Page 233
Ph UV1 Trip DPO 0x9489 Ph A UV1 Trip PKP 0x948A Ph A UV1 Trip OP 0x948C Ph A UV1 Trip DPO 0x9491 Ph B UV1 Trip PKP 0x9492 Ph B UV1 Trip OP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–79...
Page 234
LE 12 Trip PKP 0x9CC2 LE 12 Trip OP 0x9CC4 LE 12 Trip DPO 0x9D01 LE 13 Trip PKP 0x9D02 LE 13 Trip OP 0x9D04 LE 13 Trip DPO 0x9D41 LE 14 Trip PKP 8–80 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 235
LE 8 Alarm OP 0xA684 LE 8 Alarm DPO 0xABC1 HI Amb Temp PKP 0xABC2 HI Amb Temp OP 0xABC4 HI Amb Temp DPO 0xAC01 LO Amb Temp PKP 0xAC02 LO Amb Temp OP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–81...
Page 236
Ph A TOC1 Alrm OP 0xB0CC Ph A TOC1 Alrm DPO 0xB0D1 Ph B TOC1 Alrm PKP 0xB0D2 Ph B TOC1 Alrm OP 0xB0D4 Ph B TOC1 Alrm DPO 0xB0E1 Ph C TOC1 Alrm PKP 8–82 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 237
Ph OV1 Alarm DPO 0xB449 Ph A OV1 Alarm PKP 0xB44A Ph A OV1 Alarm OP 0xB44C Ph A OV1 Alarm DPO 0xB451 Ph B OV1 Alarm PKP 0xB452 Ph B OV1 Alarm OP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–83...
Page 238
NSeq IOC Alrm PKP 0xB6C2 NSeq IOC Alrm OP 0xB6C4 NSeq IOC Alrm DPO 0xB889 Ph A OV2 Alarm PKP 0xBC01 LE 9 Alarm PKP 0xBC02 LE 9 Alarm OP 0xBC04 LE 9 Alarm DPO 8–84 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 240
LE 8 OP 0xC684 LE 8 DPO 0xC882 Setpoint Group2 On 0xC902 Open Breaker 0xC942 Close Breaker 0xC982 Maint. Req. OP 0xCA02 52a Contact OP 0xCA42 52b Contact OP 0xCA44 52b Contact DPO 8–86 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 241
0xD204 Gnd IOC2 DPO 0xD342 Ntrl Dir Rev OP 0xD344 Ntrl Dir Rev DPO 0xD382 Gnd Dir Rev OP 0xD384 Gnd Dir Rev DPO 0xD3C1 NegSeq OV PKP 0xD3C2 NegSeq OV OP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–87...
Page 247
PhDir UndAlm 0xBE80 GndDir UndAlm 0xBEC0 NtrlDir UndAlm 0xC302 Synchrocheck OP 0xC342 Synchrocheck Close OP 0xC382 Synchrocheck Condition 0xC4C0 LE 1 0xC500 LE 2 0xC540 LE 3 0xC580 LE 4 0xC5C0 LE 5 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–93...
Page 249
DNP Binary Inputs 0x0040 Contact IN 1 On 0x0041 Contact IN 2 On 0x0042 Contact IN 3 On 0x0043 Contact IN 4 On 0x0044 Contact IN 5 On 0x0045 Contact IN 6 On 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–95...
Page 250
Virtual IN 27 On 0x009B Virtual IN 28 On 0x009C Virtual IN 29 On 0x009D Virtual IN 30 On 0x009E Virtual IN 31 On 0x009F Virtual IN 32 On 0x01C0 Remote IN 1 On 8–96 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 251
Remote IN 10 Off 0x01EA Remote IN 11 Off 0x01EB Remote IN 12 Off 0x01EC Remote IN 13 Off 0x01ED Remote IN 14 Off 0x01EE Remote IN 15 Off 0x01EF Remote IN 16 Off 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–97...
Page 252
LE 6 Trip PKP 0x8602 LE 6 Trip OP 0x8604 LE 6 Trip DPO 0x8641 LE 7 Trip PKP 0x8642 LE 7 Trip OP 0x8644 LE 7 Trip DPO 0x8681 LE 8 Trip PKP 8–98 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 253
Ph IOC2 Trip OP 0x9184 Ph IOC2 Trip DPO 0x9189 Ph A IOC2 Trip PKP 0x918A Ph A IOC2 Trip OP 0x918C Ph A IOC2 Trip DPO 0x9191 Ph B IOC2 Trip PKP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–99...
Page 254
Ph C UV1 Trip PKP 0x94A2 Ph C UV1 Trip OP 0x94A4 Ph C UV1 Trip DPO 0x94C1 Aux OV Trip PKP 0x94C2 Aux OV Trip OP 0x94C4 Aux OV Trip DPO 8–100 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 255
LE 14 Trip PKP 0x9D42 LE 14 Trip OP 0x9D44 LE 14 Trip DPO 0x9D81 LE 15 Trip PKP 0x9D82 LE 15 Trip OP 0x9D84 LE 15 Trip DPO 0x9DC1 LE 16 Trip PKP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–101...
Page 256
LO Amb Temp OP 0xAC04 LO Amb Temp DPO 0xAC42 Self Test Alarm OP 0xACC2 BKRTrpCntrAlrm OP 0xAD02 R1 CoilMonAlrm OP 0xAD42 R2 CoilMonAlrm OP 0xAD81 BKR1 Fail Alrm PKP 0xAD82 BKR1 Fail Alrm OP 8–102 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 258
Ph UV1 Alarm DPO 0xB489 Ph A UV1 Alarm PKP 0xB48A Ph A UV1 Alarm OP 0xB48C Ph A UV1 Alarm DPO 0xB491 Ph B UV1 Alarm PKP 0xB492 Ph B UV1 Alarm OP 8–104 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 259
LE 12 Alarm PKP 0xBCC2 LE 12 Alarm OP 0xBCC4 LE 12 Alarm DPO 0xBD01 LE 13 Alarm PKP 0xBD02 LE 13 Alarm OP 0xBD04 LE 13 Alarm DPO 0xBD41 LE 14 Alarm PKP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–105...
Page 260
Output Relay 4 On 0xC0C2 Output Relay 5 On 0xC102 Output Relay 6 On 0xC142 Self-Test Rly 7 On 0xC182 Output Relay 1 On 0xC1C2 Output Relay 2 On 0xC202 BKR Connected 0xC302 Synchrocheck OP 8–106 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 261
AR In Progress PKP 0xCB82 AR In Progress 0xCB84 AR In Progress DPO 0xCBC1 AR Disabled PKP 0xCBC2 AR Disabled 0xCBC4 AR Disabled DPO 0xCC02 AR Ext. Init 0xCC41 AR Ready PKP 0xCC42 AR Ready 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–107...
Page 264
Contact IN 1 Off 0x0061 Contact IN 2 Off 0x0062 Contact IN 3 Off 0x0063 Contact IN 4 Off 0x0064 Contact IN 5 Off 0x0065 Contact IN 6 Off 0x0066 Contact IN 7 Off 8–110 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 265
Virtual IN 6 Off 0x00A6 Virtual IN 7 Off 0x00A7 Virtual IN 8 Off 0x00A8 Virtual IN 9 Off 0x00A9 Virtual IN 10 Off 0x00AA Virtual IN 11 Off 0x00AB Virtual IN 12 Off 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–111...
Page 266
Remote IN 21 On 0x01D5 Remote IN 22 On 0x01D6 Remote IN 23 On 0x01D7 Remote IN 24 On 0x01D8 Remote IN 25 On 0x01D9 Remote IN 26 On 0x01DA Remote IN 27 On 8–112 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 267
Fuse Fail Trip DPO 0x96C1 NegSeq IOC Trp PKP 0x96C2 NegSeq IOC Trp OP 0x96C4 NegSeq IOC Trp DPO 0x9C01 LE 9 Trip PKP 0x9C02 LE 9 Trip OP 0x9C04 LE 9 Trip DPO 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–113...
Page 268
LE 9 Alarm DPO 0xBC41 LE 10 Alarm PKP 0xBC42 LE 10 Alarm OP 0xBC44 LE 10 Alarm DPO 0xBC81 LE 11 Alarm PKP 0xBC82 LE 11 Alarm OP 0xBC84 LE 11 Alarm DPO 8–114 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 269
PhCDir UndAlm DPO 0xBE81 GndDir UndAlm PKP 0xBE82 GndDir UndAlm OP 0xBE84 GndDir UndAlm DPO 0xBEC1 NtrlDir UndAlm PKP 0xBEC2 NtrlDir UndAlm OP 0xBEC4 NtrlDir UndAlm DPO 0xC302 Synchrocheck OP 0xC342 Synchrocheck Close OP 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–115...
Page 270
0xDD44 LE 14 DPO 0xDD81 LE 15 PKP 0xDD82 LE 15 OP 0xDD84 LE 15 DPO 0xDDC1 LE 16 PKP 0xDDC2 LE 16 OP 0xDDC4 LE 16 DPO 0xDE01 PhDir Rev PKP 8–116 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 271
PhDir Und Blk DPO 0xFE81 GndDir Und Blk PKP 0xFE82 GndDir Und Blk OP 0xFE84 GndDir Und Blk DPO 0xFEC1 NtrlDir Und Blk PKP 0xFEC2 NtrlDir Und Blk OP 0xFEC4 NtrlDir Und Blk DPO 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–117...
Page 273
32 bits Contact/Virtual Input/Output Status FC169 unsigned 16 bits Month Not Set January February March April June July August September October November December FC170 unsigned 16 bits Count of Week Not Set 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–119...
Page 281
Internal SNTP Port A IRIGB FC423 unsigned 16 bits Redundancy State Disabled No Signal Calibrating Synchronized FC424 unsigned 16 bits Dead Condition None Dead Line-Dead Bus Live Line-Dead Bus Dead Line-Live Bus 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 8–127...
Page 282
Type Definition Any Line-Dead Bus Dead Line-Any Bus One Live-Other Dead Not Both Live FC425 unsigned 16 bits Epoch type UTC since 1995 UTC since 1900 UTC since 1970 TAI since 1970 8–128 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
For the 350 implementation of Modbus, this function code can be used to read any setpoints (“holding registers”). Holding registers are 16 bit (two byte) values transmitted high order byte first. Thus all 350 Setpoints are sent as two bytes. The maximum number of registers that can be read in one transmission is 125.
Modbus Implementation: Read Input Registers 350 implementation: Read Actual Values For the 350 implementation of Modbus, this function code can be used to read any actual values (“input registers”). Input registers are 16 bit (two byte) values transmitted high order byte first.
1 CODE VALUE FF 00 perform function DF 6A CRC error code The commands that can be performed by the 350 using function code 05 can also be initiated by using function code 10. Operation Code Description Reset Open...
Modbus Implementation: Preset Single Register 350 Implementation: Store Single Setpoint This command allows the master to store a single setpoint into the memory of a 350 . The slave response to this function code is to echo the entire master transmission.
Function Code 08H Modbus Implementation: Loopback Test 350 Implementation: Loopback Test This function is used to test the integrity of the communication link. The 350 will echo the request. For example, consider a loopback test from slave 17: Table 9-7: MASTER/SLAVE PACKET FORMAT FOR FUNCTION CODE 08H...
Modbus allows up to a maximum of 60 holding registers to be stored. The 350 response to this function code is to echo the slave address, function code, starting address, the number of Setpoints stored, and the CRC.
Error Responses When a 350 detects an error other than a CRC error, a response will be sent to the master. The MSBit of the FUNCTION CODE byte will be set to 1 (i.e. the function code sent from the slave will be equal to the function code sent from the master plus 128).
Table 9-9: MASTER/SLAVE PACKET FORMAT FOR PERFORMING COMMANDS MASTER TRANSMISSION BYTES EXAMPLE DESCRIPTION SLAVE ADDRESS message for slave 17 FUNCTION CODE store multiple setpoints DATA STARTING ADDRESS 00 80 setpoint address 00 9–8 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 291
EXAMPLE DESCRIPTION SLAVE ADDRESS message from slave FUNCTION CODE store multiple setpoints DATA STARTING ADDRESS 00 80 setpoint address 00 NUMBER OF SETPOINTS 00 02 2 setpoints 42 B0 CRC error code 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 9–9...
Page 292
PERFORMING COMMANDS USING FUNCTION CODE 10H CHAPTER 9: MODBUS FUNCTIONS 9–10 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Chapter 10: Using the MODBUS User Using the MODBUS User Map 350 relay units incorporate a powerful feature called Modbus User Map, that allows the user to read 125 non-consecutive data records. A master computer will often have to interrogate continuously several connected slave relays.
Page 294
40572 User Map Address 49 30001 43763 30328 40573 User Map Address 50 30001 43763 30329 40574 User Map Address 51 30001 43763 30330 40575 User Map Address 52 30001 43763 30331 10–2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 295
40617 User Map Address 94 30001 43763 30001 40618 User Map Address 95 30001 43763 30001 40619 User Map Address 96 30001 43763 30001 40620 User Map Address 97 30001 43763 30001 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 10–3...
Page 296
User Map Value 8 0xFFFF 30532 User Map Value 9 0xFFFF 30533 User Map Value 10 0xFFFF 30534 User Map Value 11 0xFFFF 30535 User Map Value 12 0xFFFF 30536 User Map Value 13 0xFFFF 10–4 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 297
User Map Value 53 0xFFFF 30577 User Map Value 54 0xFFFF 30578 User Map Value 55 0xFFFF 30579 User Map Value 56 0xFFFF 30580 User Map Value 57 0xFFFF 30581 User Map Value 58 0xFFFF 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 10–5...
Page 298
User Map Value 98 0xFFFF 30622 User Map Value 99 0xFFFF 30623 User Map Value 100 0xFFFF 30624 User Map Value 101 0xFFFF 30625 User Map Value 102 0xFFFF 30626 User Map Value 103 0xFFFF 10–6 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Page 299
User Map Value 120 0xFFFF 30644 User Map Value 121 0xFFFF 30645 User Map Value 122 0xFFFF 30646 User Map Value 123 0xFFFF 30647 User Map Value 124 0xFFFF 30648 User Map Value 125 0xFFFF 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 10–7...
Page 300
MODBUS USER MAP CHAPTER 10: USING THE MODBUS USER MAP 10–8 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...
Appendix Warranty For products shipped as of 1 October 2013, GE Digital Energy warrants most of its GE manufactured products for 10 years. For warranty details including any limitations and disclaimers, see the GE Digital Energy Terms and Conditions at https:// www.gedigitalenergy.com/multilin/warranty.htm...
Page 302
CHANGE NOTES Table 2: Major Updates for SR350-AA Page Number CHANGES Chapter 8, 9 Revised memory map and function code General Minor corrections, added change notes 11–2 350 FEEDER PROTECTION SYSTEM – COMMUNICATIONS GUIDE...